Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

141 lines
3.8 KiB

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Utilities for bounding box manipulation and GIoU.
"""
import torch
from torchvision.ops.boxes import box_area
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
# import ipdb; ipdb.set_trace()
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union + 1e-6)
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
Returns a [N, M] pairwise matrix, where N = len(boxes1)
and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
# except:
# import ipdb; ipdb.set_trace()
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
return iou - (area - union) / (area + 1e-6)
# modified from torchvision to also return the union
def box_iou_pairwise(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
wh = (rb - lt).clamp(min=0) # [N,2]
inter = wh[:, 0] * wh[:, 1] # [N]
union = area1 + area2 - inter
iou = inter / union
return iou, union
def generalized_box_iou_pairwise(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
Input:
- boxes1, boxes2: N,4
Output:
- giou: N, 4
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
assert boxes1.shape == boxes2.shape
iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
lt = torch.min(boxes1[:, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,2]
area = wh[:, 0] * wh[:, 1]
return iou - (area - union) / area
def masks_to_boxes(masks):
"""Compute the bounding boxes around the provided masks
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensors, with the boxes in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
x_mask = masks * x.unsqueeze(0)
x_max = x_mask.flatten(1).max(-1)[0]
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
y_mask = masks * y.unsqueeze(0)
y_max = y_mask.flatten(1).max(-1)[0]
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
return torch.stack([x_min, y_min, x_max, y_max], 1)
if __name__ == "__main__":
x = torch.rand(5, 4)
y = torch.rand(3, 4)
iou, union = box_iou(x, y)
import ipdb
ipdb.set_trace()