mirror of https://github.com/madler/zlib.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
346 lines
13 KiB
346 lines
13 KiB
/* deflate.h -- internal compression state |
|
* Copyright (C) 1995-2018 Jean-loup Gailly |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
*/ |
|
|
|
/* WARNING: this file should *not* be used by applications. It is |
|
part of the implementation of the compression library and is |
|
subject to change. Applications should only use zlib.h. |
|
*/ |
|
|
|
/* @(#) $Id$ */ |
|
|
|
#ifndef DEFLATE_H |
|
#define DEFLATE_H |
|
|
|
#include "zutil.h" |
|
|
|
/* define NO_GZIP when compiling if you want to disable gzip header and |
|
trailer creation by deflate(). NO_GZIP would be used to avoid linking in |
|
the crc code when it is not needed. For shared libraries, gzip encoding |
|
should be left enabled. */ |
|
#ifndef NO_GZIP |
|
# define GZIP |
|
#endif |
|
|
|
/* =========================================================================== |
|
* Internal compression state. |
|
*/ |
|
|
|
#define LENGTH_CODES 29 |
|
/* number of length codes, not counting the special END_BLOCK code */ |
|
|
|
#define LITERALS 256 |
|
/* number of literal bytes 0..255 */ |
|
|
|
#define L_CODES (LITERALS+1+LENGTH_CODES) |
|
/* number of Literal or Length codes, including the END_BLOCK code */ |
|
|
|
#define D_CODES 30 |
|
/* number of distance codes */ |
|
|
|
#define BL_CODES 19 |
|
/* number of codes used to transfer the bit lengths */ |
|
|
|
#define HEAP_SIZE (2*L_CODES+1) |
|
/* maximum heap size */ |
|
|
|
#define MAX_BITS 15 |
|
/* All codes must not exceed MAX_BITS bits */ |
|
|
|
#define Buf_size 16 |
|
/* size of bit buffer in bi_buf */ |
|
|
|
#define INIT_STATE 42 /* zlib header -> BUSY_STATE */ |
|
#ifdef GZIP |
|
# define GZIP_STATE 57 /* gzip header -> BUSY_STATE | EXTRA_STATE */ |
|
#endif |
|
#define EXTRA_STATE 69 /* gzip extra block -> NAME_STATE */ |
|
#define NAME_STATE 73 /* gzip file name -> COMMENT_STATE */ |
|
#define COMMENT_STATE 91 /* gzip comment -> HCRC_STATE */ |
|
#define HCRC_STATE 103 /* gzip header CRC -> BUSY_STATE */ |
|
#define BUSY_STATE 113 /* deflate -> FINISH_STATE */ |
|
#define FINISH_STATE 666 /* stream complete */ |
|
/* Stream status */ |
|
|
|
|
|
/* Data structure describing a single value and its code string. */ |
|
typedef struct ct_data_s { |
|
union { |
|
ush freq; /* frequency count */ |
|
ush code; /* bit string */ |
|
} fc; |
|
union { |
|
ush dad; /* father node in Huffman tree */ |
|
ush len; /* length of bit string */ |
|
} dl; |
|
} FAR ct_data; |
|
|
|
#define Freq fc.freq |
|
#define Code fc.code |
|
#define Dad dl.dad |
|
#define Len dl.len |
|
|
|
typedef struct static_tree_desc_s static_tree_desc; |
|
|
|
typedef struct tree_desc_s { |
|
ct_data *dyn_tree; /* the dynamic tree */ |
|
int max_code; /* largest code with non zero frequency */ |
|
const static_tree_desc *stat_desc; /* the corresponding static tree */ |
|
} FAR tree_desc; |
|
|
|
typedef ush Pos; |
|
typedef Pos FAR Posf; |
|
typedef unsigned IPos; |
|
|
|
/* A Pos is an index in the character window. We use short instead of int to |
|
* save space in the various tables. IPos is used only for parameter passing. |
|
*/ |
|
|
|
typedef struct internal_state { |
|
z_streamp strm; /* pointer back to this zlib stream */ |
|
int status; /* as the name implies */ |
|
Bytef *pending_buf; /* output still pending */ |
|
ulg pending_buf_size; /* size of pending_buf */ |
|
Bytef *pending_out; /* next pending byte to output to the stream */ |
|
ulg pending; /* nb of bytes in the pending buffer */ |
|
int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ |
|
gz_headerp gzhead; /* gzip header information to write */ |
|
ulg gzindex; /* where in extra, name, or comment */ |
|
Byte method; /* can only be DEFLATED */ |
|
int last_flush; /* value of flush param for previous deflate call */ |
|
|
|
/* used by deflate.c: */ |
|
|
|
uInt w_size; /* LZ77 window size (32K by default) */ |
|
uInt w_bits; /* log2(w_size) (8..16) */ |
|
uInt w_mask; /* w_size - 1 */ |
|
|
|
Bytef *window; |
|
/* Sliding window. Input bytes are read into the second half of the window, |
|
* and move to the first half later to keep a dictionary of at least wSize |
|
* bytes. With this organization, matches are limited to a distance of |
|
* wSize-MAX_MATCH bytes, but this ensures that IO is always |
|
* performed with a length multiple of the block size. Also, it limits |
|
* the window size to 64K, which is quite useful on MSDOS. |
|
* To do: use the user input buffer as sliding window. |
|
*/ |
|
|
|
ulg window_size; |
|
/* Actual size of window: 2*wSize, except when the user input buffer |
|
* is directly used as sliding window. |
|
*/ |
|
|
|
Posf *prev; |
|
/* Link to older string with same hash index. To limit the size of this |
|
* array to 64K, this link is maintained only for the last 32K strings. |
|
* An index in this array is thus a window index modulo 32K. |
|
*/ |
|
|
|
Posf *head; /* Heads of the hash chains or NIL. */ |
|
|
|
uInt ins_h; /* hash index of string to be inserted */ |
|
uInt hash_size; /* number of elements in hash table */ |
|
uInt hash_bits; /* log2(hash_size) */ |
|
uInt hash_mask; /* hash_size-1 */ |
|
|
|
uInt hash_shift; |
|
/* Number of bits by which ins_h must be shifted at each input |
|
* step. It must be such that after MIN_MATCH steps, the oldest |
|
* byte no longer takes part in the hash key, that is: |
|
* hash_shift * MIN_MATCH >= hash_bits |
|
*/ |
|
|
|
long block_start; |
|
/* Window position at the beginning of the current output block. Gets |
|
* negative when the window is moved backwards. |
|
*/ |
|
|
|
uInt match_length; /* length of best match */ |
|
IPos prev_match; /* previous match */ |
|
int match_available; /* set if previous match exists */ |
|
uInt strstart; /* start of string to insert */ |
|
uInt match_start; /* start of matching string */ |
|
uInt lookahead; /* number of valid bytes ahead in window */ |
|
|
|
uInt prev_length; |
|
/* Length of the best match at previous step. Matches not greater than this |
|
* are discarded. This is used in the lazy match evaluation. |
|
*/ |
|
|
|
uInt max_chain_length; |
|
/* To speed up deflation, hash chains are never searched beyond this |
|
* length. A higher limit improves compression ratio but degrades the |
|
* speed. |
|
*/ |
|
|
|
uInt max_lazy_match; |
|
/* Attempt to find a better match only when the current match is strictly |
|
* smaller than this value. This mechanism is used only for compression |
|
* levels >= 4. |
|
*/ |
|
# define max_insert_length max_lazy_match |
|
/* Insert new strings in the hash table only if the match length is not |
|
* greater than this length. This saves time but degrades compression. |
|
* max_insert_length is used only for compression levels <= 3. |
|
*/ |
|
|
|
int level; /* compression level (1..9) */ |
|
int strategy; /* favor or force Huffman coding*/ |
|
|
|
uInt good_match; |
|
/* Use a faster search when the previous match is longer than this */ |
|
|
|
int nice_match; /* Stop searching when current match exceeds this */ |
|
|
|
/* used by trees.c: */ |
|
/* Didn't use ct_data typedef below to suppress compiler warning */ |
|
struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ |
|
struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ |
|
struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ |
|
|
|
struct tree_desc_s l_desc; /* desc. for literal tree */ |
|
struct tree_desc_s d_desc; /* desc. for distance tree */ |
|
struct tree_desc_s bl_desc; /* desc. for bit length tree */ |
|
|
|
ush bl_count[MAX_BITS+1]; |
|
/* number of codes at each bit length for an optimal tree */ |
|
|
|
int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ |
|
int heap_len; /* number of elements in the heap */ |
|
int heap_max; /* element of largest frequency */ |
|
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. |
|
* The same heap array is used to build all trees. |
|
*/ |
|
|
|
uch depth[2*L_CODES+1]; |
|
/* Depth of each subtree used as tie breaker for trees of equal frequency |
|
*/ |
|
|
|
uchf *sym_buf; /* buffer for distances and literals/lengths */ |
|
|
|
uInt lit_bufsize; |
|
/* Size of match buffer for literals/lengths. There are 4 reasons for |
|
* limiting lit_bufsize to 64K: |
|
* - frequencies can be kept in 16 bit counters |
|
* - if compression is not successful for the first block, all input |
|
* data is still in the window so we can still emit a stored block even |
|
* when input comes from standard input. (This can also be done for |
|
* all blocks if lit_bufsize is not greater than 32K.) |
|
* - if compression is not successful for a file smaller than 64K, we can |
|
* even emit a stored file instead of a stored block (saving 5 bytes). |
|
* This is applicable only for zip (not gzip or zlib). |
|
* - creating new Huffman trees less frequently may not provide fast |
|
* adaptation to changes in the input data statistics. (Take for |
|
* example a binary file with poorly compressible code followed by |
|
* a highly compressible string table.) Smaller buffer sizes give |
|
* fast adaptation but have of course the overhead of transmitting |
|
* trees more frequently. |
|
* - I can't count above 4 |
|
*/ |
|
|
|
uInt sym_next; /* running index in sym_buf */ |
|
uInt sym_end; /* symbol table full when sym_next reaches this */ |
|
|
|
ulg opt_len; /* bit length of current block with optimal trees */ |
|
ulg static_len; /* bit length of current block with static trees */ |
|
uInt matches; /* number of string matches in current block */ |
|
uInt insert; /* bytes at end of window left to insert */ |
|
|
|
#ifdef ZLIB_DEBUG |
|
ulg compressed_len; /* total bit length of compressed file mod 2^32 */ |
|
ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ |
|
#endif |
|
|
|
ush bi_buf; |
|
/* Output buffer. bits are inserted starting at the bottom (least |
|
* significant bits). |
|
*/ |
|
int bi_valid; |
|
/* Number of valid bits in bi_buf. All bits above the last valid bit |
|
* are always zero. |
|
*/ |
|
|
|
ulg high_water; |
|
/* High water mark offset in window for initialized bytes -- bytes above |
|
* this are set to zero in order to avoid memory check warnings when |
|
* longest match routines access bytes past the input. This is then |
|
* updated to the new high water mark. |
|
*/ |
|
|
|
} FAR deflate_state; |
|
|
|
/* Output a byte on the stream. |
|
* IN assertion: there is enough room in pending_buf. |
|
*/ |
|
#define put_byte(s, c) {s->pending_buf[s->pending++] = (Bytef)(c);} |
|
|
|
|
|
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
|
/* Minimum amount of lookahead, except at the end of the input file. |
|
* See deflate.c for comments about the MIN_MATCH+1. |
|
*/ |
|
|
|
#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) |
|
/* In order to simplify the code, particularly on 16 bit machines, match |
|
* distances are limited to MAX_DIST instead of WSIZE. |
|
*/ |
|
|
|
#define WIN_INIT MAX_MATCH |
|
/* Number of bytes after end of data in window to initialize in order to avoid |
|
memory checker errors from longest match routines */ |
|
|
|
/* in trees.c */ |
|
void ZLIB_INTERNAL _tr_init(deflate_state *s); |
|
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc); |
|
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, |
|
ulg stored_len, int last); |
|
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s); |
|
void ZLIB_INTERNAL _tr_align(deflate_state *s); |
|
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, |
|
ulg stored_len, int last); |
|
|
|
#define d_code(dist) \ |
|
((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) |
|
/* Mapping from a distance to a distance code. dist is the distance - 1 and |
|
* must not have side effects. _dist_code[256] and _dist_code[257] are never |
|
* used. |
|
*/ |
|
|
|
#ifndef ZLIB_DEBUG |
|
/* Inline versions of _tr_tally for speed: */ |
|
|
|
#if defined(GEN_TREES_H) || !defined(STDC) |
|
extern uch ZLIB_INTERNAL _length_code[]; |
|
extern uch ZLIB_INTERNAL _dist_code[]; |
|
#else |
|
extern const uch ZLIB_INTERNAL _length_code[]; |
|
extern const uch ZLIB_INTERNAL _dist_code[]; |
|
#endif |
|
|
|
# define _tr_tally_lit(s, c, flush) \ |
|
{ uch cc = (c); \ |
|
s->sym_buf[s->sym_next++] = 0; \ |
|
s->sym_buf[s->sym_next++] = 0; \ |
|
s->sym_buf[s->sym_next++] = cc; \ |
|
s->dyn_ltree[cc].Freq++; \ |
|
flush = (s->sym_next == s->sym_end); \ |
|
} |
|
# define _tr_tally_dist(s, distance, length, flush) \ |
|
{ uch len = (uch)(length); \ |
|
ush dist = (ush)(distance); \ |
|
s->sym_buf[s->sym_next++] = (uch)dist; \ |
|
s->sym_buf[s->sym_next++] = (uch)(dist >> 8); \ |
|
s->sym_buf[s->sym_next++] = len; \ |
|
dist--; \ |
|
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ |
|
s->dyn_dtree[d_code(dist)].Freq++; \ |
|
flush = (s->sym_next == s->sym_end); \ |
|
} |
|
#else |
|
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) |
|
# define _tr_tally_dist(s, distance, length, flush) \ |
|
flush = _tr_tally(s, distance, length) |
|
#endif |
|
|
|
#endif /* DEFLATE_H */
|
|
|