mirror of https://github.com/madler/zlib.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
672 lines
24 KiB
672 lines
24 KiB
/* infcover.c -- test zlib's inflate routines with full code coverage |
|
* Copyright (C) 2011, 2016 Mark Adler |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
*/ |
|
|
|
/* to use, do: ./configure --cover && make cover */ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <assert.h> |
|
#include "zlib.h" |
|
|
|
/* get definition of internal structure so we can mess with it (see pull()), |
|
and so we can call inflate_trees() (see cover5()) */ |
|
#define ZLIB_INTERNAL |
|
#include "inftrees.h" |
|
#include "inflate.h" |
|
|
|
#define local static |
|
|
|
/* -- memory tracking routines -- */ |
|
|
|
/* |
|
These memory tracking routines are provided to zlib and track all of zlib's |
|
allocations and deallocations, check for LIFO operations, keep a current |
|
and high water mark of total bytes requested, optionally set a limit on the |
|
total memory that can be allocated, and when done check for memory leaks. |
|
|
|
They are used as follows: |
|
|
|
z_stream strm; |
|
mem_setup(&strm) initializes the memory tracking and sets the |
|
zalloc, zfree, and opaque members of strm to use |
|
memory tracking for all zlib operations on strm |
|
mem_limit(&strm, limit) sets a limit on the total bytes requested -- a |
|
request that exceeds this limit will result in an |
|
allocation failure (returns NULL) -- setting the |
|
limit to zero means no limit, which is the default |
|
after mem_setup() |
|
mem_used(&strm, "msg") prints to stderr "msg" and the total bytes used |
|
mem_high(&strm, "msg") prints to stderr "msg" and the high water mark |
|
mem_done(&strm, "msg") ends memory tracking, releases all allocations |
|
for the tracking as well as leaked zlib blocks, if |
|
any. If there was anything unusual, such as leaked |
|
blocks, non-FIFO frees, or frees of addresses not |
|
allocated, then "msg" and information about the |
|
problem is printed to stderr. If everything is |
|
normal, nothing is printed. mem_done resets the |
|
strm members to Z_NULL to use the default memory |
|
allocation routines on the next zlib initialization |
|
using strm. |
|
*/ |
|
|
|
/* these items are strung together in a linked list, one for each allocation */ |
|
struct mem_item { |
|
void *ptr; /* pointer to allocated memory */ |
|
size_t size; /* requested size of allocation */ |
|
struct mem_item *next; /* pointer to next item in list, or NULL */ |
|
}; |
|
|
|
/* this structure is at the root of the linked list, and tracks statistics */ |
|
struct mem_zone { |
|
struct mem_item *first; /* pointer to first item in list, or NULL */ |
|
size_t total, highwater; /* total allocations, and largest total */ |
|
size_t limit; /* memory allocation limit, or 0 if no limit */ |
|
int notlifo, rogue; /* counts of non-LIFO frees and rogue frees */ |
|
}; |
|
|
|
/* memory allocation routine to pass to zlib */ |
|
local void *mem_alloc(void *mem, unsigned count, unsigned size) |
|
{ |
|
void *ptr; |
|
struct mem_item *item; |
|
struct mem_zone *zone = mem; |
|
size_t len = count * (size_t)size; |
|
|
|
/* induced allocation failure */ |
|
if (zone == NULL || (zone->limit && zone->total + len > zone->limit)) |
|
return NULL; |
|
|
|
/* perform allocation using the standard library, fill memory with a |
|
non-zero value to make sure that the code isn't depending on zeros */ |
|
ptr = malloc(len); |
|
if (ptr == NULL) |
|
return NULL; |
|
memset(ptr, 0xa5, len); |
|
|
|
/* create a new item for the list */ |
|
item = malloc(sizeof(struct mem_item)); |
|
if (item == NULL) { |
|
free(ptr); |
|
return NULL; |
|
} |
|
item->ptr = ptr; |
|
item->size = len; |
|
|
|
/* insert item at the beginning of the list */ |
|
item->next = zone->first; |
|
zone->first = item; |
|
|
|
/* update the statistics */ |
|
zone->total += item->size; |
|
if (zone->total > zone->highwater) |
|
zone->highwater = zone->total; |
|
|
|
/* return the allocated memory */ |
|
return ptr; |
|
} |
|
|
|
/* memory free routine to pass to zlib */ |
|
local void mem_free(void *mem, void *ptr) |
|
{ |
|
struct mem_item *item, *next; |
|
struct mem_zone *zone = mem; |
|
|
|
/* if no zone, just do a free */ |
|
if (zone == NULL) { |
|
free(ptr); |
|
return; |
|
} |
|
|
|
/* point next to the item that matches ptr, or NULL if not found -- remove |
|
the item from the linked list if found */ |
|
next = zone->first; |
|
if (next) { |
|
if (next->ptr == ptr) |
|
zone->first = next->next; /* first one is it, remove from list */ |
|
else { |
|
do { /* search the linked list */ |
|
item = next; |
|
next = item->next; |
|
} while (next != NULL && next->ptr != ptr); |
|
if (next) { /* if found, remove from linked list */ |
|
item->next = next->next; |
|
zone->notlifo++; /* not a LIFO free */ |
|
} |
|
|
|
} |
|
} |
|
|
|
/* if found, update the statistics and free the item */ |
|
if (next) { |
|
zone->total -= next->size; |
|
free(next); |
|
} |
|
|
|
/* if not found, update the rogue count */ |
|
else |
|
zone->rogue++; |
|
|
|
/* in any case, do the requested free with the standard library function */ |
|
free(ptr); |
|
} |
|
|
|
/* set up a controlled memory allocation space for monitoring, set the stream |
|
parameters to the controlled routines, with opaque pointing to the space */ |
|
local void mem_setup(z_stream *strm) |
|
{ |
|
struct mem_zone *zone; |
|
|
|
zone = malloc(sizeof(struct mem_zone)); |
|
assert(zone != NULL); |
|
zone->first = NULL; |
|
zone->total = 0; |
|
zone->highwater = 0; |
|
zone->limit = 0; |
|
zone->notlifo = 0; |
|
zone->rogue = 0; |
|
strm->opaque = zone; |
|
strm->zalloc = mem_alloc; |
|
strm->zfree = mem_free; |
|
} |
|
|
|
/* set a limit on the total memory allocation, or 0 to remove the limit */ |
|
local void mem_limit(z_stream *strm, size_t limit) |
|
{ |
|
struct mem_zone *zone = strm->opaque; |
|
|
|
zone->limit = limit; |
|
} |
|
|
|
/* show the current total requested allocations in bytes */ |
|
local void mem_used(z_stream *strm, char *prefix) |
|
{ |
|
struct mem_zone *zone = strm->opaque; |
|
|
|
fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total); |
|
} |
|
|
|
/* show the high water allocation in bytes */ |
|
local void mem_high(z_stream *strm, char *prefix) |
|
{ |
|
struct mem_zone *zone = strm->opaque; |
|
|
|
fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater); |
|
} |
|
|
|
/* release the memory allocation zone -- if there are any surprises, notify */ |
|
local void mem_done(z_stream *strm, char *prefix) |
|
{ |
|
int count = 0; |
|
struct mem_item *item, *next; |
|
struct mem_zone *zone = strm->opaque; |
|
|
|
/* show high water mark */ |
|
mem_high(strm, prefix); |
|
|
|
/* free leftover allocations and item structures, if any */ |
|
item = zone->first; |
|
while (item != NULL) { |
|
free(item->ptr); |
|
next = item->next; |
|
free(item); |
|
item = next; |
|
count++; |
|
} |
|
|
|
/* issue alerts about anything unexpected */ |
|
if (count || zone->total) |
|
fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n", |
|
prefix, zone->total, count); |
|
if (zone->notlifo) |
|
fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo); |
|
if (zone->rogue) |
|
fprintf(stderr, "** %s: %d frees not recognized\n", |
|
prefix, zone->rogue); |
|
|
|
/* free the zone and delete from the stream */ |
|
free(zone); |
|
strm->opaque = Z_NULL; |
|
strm->zalloc = Z_NULL; |
|
strm->zfree = Z_NULL; |
|
} |
|
|
|
/* -- inflate test routines -- */ |
|
|
|
/* Decode a hexadecimal string, set *len to length, in[] to the bytes. This |
|
decodes liberally, in that hex digits can be adjacent, in which case two in |
|
a row writes a byte. Or they can be delimited by any non-hex character, |
|
where the delimiters are ignored except when a single hex digit is followed |
|
by a delimiter, where that single digit writes a byte. The returned data is |
|
allocated and must eventually be freed. NULL is returned if out of memory. |
|
If the length is not needed, then len can be NULL. */ |
|
local unsigned char *h2b(const char *hex, unsigned *len) |
|
{ |
|
unsigned char *in, *re; |
|
unsigned next, val; |
|
|
|
in = malloc((strlen(hex) + 1) >> 1); |
|
if (in == NULL) |
|
return NULL; |
|
next = 0; |
|
val = 1; |
|
do { |
|
if (*hex >= '0' && *hex <= '9') |
|
val = (val << 4) + *hex - '0'; |
|
else if (*hex >= 'A' && *hex <= 'F') |
|
val = (val << 4) + *hex - 'A' + 10; |
|
else if (*hex >= 'a' && *hex <= 'f') |
|
val = (val << 4) + *hex - 'a' + 10; |
|
else if (val != 1 && val < 32) /* one digit followed by delimiter */ |
|
val += 240; /* make it look like two digits */ |
|
if (val > 255) { /* have two digits */ |
|
in[next++] = val & 0xff; /* save the decoded byte */ |
|
val = 1; /* start over */ |
|
} |
|
} while (*hex++); /* go through the loop with the terminating null */ |
|
if (len != NULL) |
|
*len = next; |
|
re = realloc(in, next); |
|
return re == NULL ? in : re; |
|
} |
|
|
|
/* generic inflate() run, where hex is the hexadecimal input data, what is the |
|
text to include in an error message, step is how much input data to feed |
|
inflate() on each call, or zero to feed it all, win is the window bits |
|
parameter to inflateInit2(), len is the size of the output buffer, and err |
|
is the error code expected from the first inflate() call (the second |
|
inflate() call is expected to return Z_STREAM_END). If win is 47, then |
|
header information is collected with inflateGetHeader(). If a zlib stream |
|
is looking for a dictionary, then an empty dictionary is provided. |
|
inflate() is run until all of the input data is consumed. */ |
|
local void inf(char *hex, char *what, unsigned step, int win, unsigned len, |
|
int err) |
|
{ |
|
int ret; |
|
unsigned have; |
|
unsigned char *in, *out; |
|
z_stream strm, copy; |
|
gz_header head; |
|
|
|
mem_setup(&strm); |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit2(&strm, win); |
|
if (ret != Z_OK) { |
|
mem_done(&strm, what); |
|
return; |
|
} |
|
out = malloc(len); assert(out != NULL); |
|
if (win == 47) { |
|
head.extra = out; |
|
head.extra_max = len; |
|
head.name = out; |
|
head.name_max = len; |
|
head.comment = out; |
|
head.comm_max = len; |
|
ret = inflateGetHeader(&strm, &head); assert(ret == Z_OK); |
|
} |
|
in = h2b(hex, &have); assert(in != NULL); |
|
if (step == 0 || step > have) |
|
step = have; |
|
strm.avail_in = step; |
|
have -= step; |
|
strm.next_in = in; |
|
do { |
|
strm.avail_out = len; |
|
strm.next_out = out; |
|
ret = inflate(&strm, Z_NO_FLUSH); assert(err == 9 || ret == err); |
|
if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT) |
|
break; |
|
if (ret == Z_NEED_DICT) { |
|
ret = inflateSetDictionary(&strm, in, 1); |
|
assert(ret == Z_DATA_ERROR); |
|
mem_limit(&strm, 1); |
|
ret = inflateSetDictionary(&strm, out, 0); |
|
assert(ret == Z_MEM_ERROR); |
|
mem_limit(&strm, 0); |
|
((struct inflate_state *)strm.state)->mode = DICT; |
|
ret = inflateSetDictionary(&strm, out, 0); |
|
assert(ret == Z_OK); |
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_BUF_ERROR); |
|
} |
|
ret = inflateCopy(©, &strm); assert(ret == Z_OK); |
|
ret = inflateEnd(©); assert(ret == Z_OK); |
|
err = 9; /* don't care next time around */ |
|
have += strm.avail_in; |
|
strm.avail_in = step > have ? have : step; |
|
have -= strm.avail_in; |
|
} while (strm.avail_in); |
|
free(in); |
|
free(out); |
|
ret = inflateReset2(&strm, -8); assert(ret == Z_OK); |
|
ret = inflateEnd(&strm); assert(ret == Z_OK); |
|
mem_done(&strm, what); |
|
} |
|
|
|
/* cover all of the lines in inflate.c up to inflate() */ |
|
local void cover_support(void) |
|
{ |
|
int ret; |
|
z_stream strm; |
|
|
|
mem_setup(&strm); |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit(&strm); assert(ret == Z_OK); |
|
mem_used(&strm, "inflate init"); |
|
ret = inflatePrime(&strm, 5, 31); assert(ret == Z_OK); |
|
ret = inflatePrime(&strm, -1, 0); assert(ret == Z_OK); |
|
ret = inflateSetDictionary(&strm, Z_NULL, 0); |
|
assert(ret == Z_STREAM_ERROR); |
|
ret = inflateEnd(&strm); assert(ret == Z_OK); |
|
mem_done(&strm, "prime"); |
|
|
|
inf("63 0", "force window allocation", 0, -15, 1, Z_OK); |
|
inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK); |
|
inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK); |
|
inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END); |
|
inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR); |
|
|
|
mem_setup(&strm); |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit_(&strm, "!", (int)sizeof(z_stream)); |
|
assert(ret == Z_VERSION_ERROR); |
|
mem_done(&strm, "wrong version"); |
|
|
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit(&strm); assert(ret == Z_OK); |
|
ret = inflateEnd(&strm); assert(ret == Z_OK); |
|
fputs("inflate built-in memory routines\n", stderr); |
|
} |
|
|
|
/* cover all inflate() header and trailer cases and code after inflate() */ |
|
local void cover_wrap(void) |
|
{ |
|
int ret; |
|
z_stream strm, copy; |
|
unsigned char dict[257]; |
|
|
|
ret = inflate(Z_NULL, 0); assert(ret == Z_STREAM_ERROR); |
|
ret = inflateEnd(Z_NULL); assert(ret == Z_STREAM_ERROR); |
|
ret = inflateCopy(Z_NULL, Z_NULL); assert(ret == Z_STREAM_ERROR); |
|
fputs("inflate bad parameters\n", stderr); |
|
|
|
inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR); |
|
inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR); |
|
inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR); |
|
inf("8 99", "set window size from header", 0, 0, 0, Z_OK); |
|
inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR); |
|
inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END); |
|
inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1, |
|
Z_DATA_ERROR); |
|
inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length", |
|
0, 47, 0, Z_STREAM_END); |
|
inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR); |
|
inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT); |
|
inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK); |
|
|
|
mem_setup(&strm); |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit2(&strm, -8); |
|
strm.avail_in = 2; |
|
strm.next_in = (void *)"\x63"; |
|
strm.avail_out = 1; |
|
strm.next_out = (void *)&ret; |
|
mem_limit(&strm, 1); |
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR); |
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR); |
|
mem_limit(&strm, 0); |
|
memset(dict, 0, 257); |
|
ret = inflateSetDictionary(&strm, dict, 257); |
|
assert(ret == Z_OK); |
|
mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256); |
|
ret = inflatePrime(&strm, 16, 0); assert(ret == Z_OK); |
|
strm.avail_in = 2; |
|
strm.next_in = (void *)"\x80"; |
|
ret = inflateSync(&strm); assert(ret == Z_DATA_ERROR); |
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_STREAM_ERROR); |
|
strm.avail_in = 4; |
|
strm.next_in = (void *)"\0\0\xff\xff"; |
|
ret = inflateSync(&strm); assert(ret == Z_OK); |
|
(void)inflateSyncPoint(&strm); |
|
ret = inflateCopy(©, &strm); assert(ret == Z_MEM_ERROR); |
|
mem_limit(&strm, 0); |
|
ret = inflateUndermine(&strm, 1); assert(ret == Z_DATA_ERROR); |
|
(void)inflateMark(&strm); |
|
ret = inflateEnd(&strm); assert(ret == Z_OK); |
|
mem_done(&strm, "miscellaneous, force memory errors"); |
|
} |
|
|
|
/* input and output functions for inflateBack() */ |
|
local unsigned pull(void *desc, unsigned char **buf) |
|
{ |
|
static unsigned int next = 0; |
|
static unsigned char dat[] = {0x63, 0, 2, 0}; |
|
struct inflate_state *state; |
|
|
|
if (desc == Z_NULL) { |
|
next = 0; |
|
return 0; /* no input (already provided at next_in) */ |
|
} |
|
state = (void *)((z_stream *)desc)->state; |
|
if (state != Z_NULL) |
|
state->mode = SYNC; /* force an otherwise impossible situation */ |
|
return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0; |
|
} |
|
|
|
local int push(void *desc, unsigned char *buf, unsigned len) |
|
{ |
|
(void)buf; |
|
(void)len; |
|
return desc != Z_NULL; /* force error if desc not null */ |
|
} |
|
|
|
/* cover inflateBack() up to common deflate data cases and after those */ |
|
local void cover_back(void) |
|
{ |
|
int ret; |
|
z_stream strm; |
|
unsigned char win[32768]; |
|
|
|
ret = inflateBackInit_(Z_NULL, 0, win, 0, 0); |
|
assert(ret == Z_VERSION_ERROR); |
|
ret = inflateBackInit(Z_NULL, 0, win); assert(ret == Z_STREAM_ERROR); |
|
ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL); |
|
assert(ret == Z_STREAM_ERROR); |
|
ret = inflateBackEnd(Z_NULL); assert(ret == Z_STREAM_ERROR); |
|
fputs("inflateBack bad parameters\n", stderr); |
|
|
|
mem_setup(&strm); |
|
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK); |
|
strm.avail_in = 2; |
|
strm.next_in = (void *)"\x03"; |
|
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); |
|
assert(ret == Z_STREAM_END); |
|
/* force output error */ |
|
strm.avail_in = 3; |
|
strm.next_in = (void *)"\x63\x00"; |
|
ret = inflateBack(&strm, pull, Z_NULL, push, &strm); |
|
assert(ret == Z_BUF_ERROR); |
|
/* force mode error by mucking with state */ |
|
ret = inflateBack(&strm, pull, &strm, push, Z_NULL); |
|
assert(ret == Z_STREAM_ERROR); |
|
ret = inflateBackEnd(&strm); assert(ret == Z_OK); |
|
mem_done(&strm, "inflateBack bad state"); |
|
|
|
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK); |
|
ret = inflateBackEnd(&strm); assert(ret == Z_OK); |
|
fputs("inflateBack built-in memory routines\n", stderr); |
|
} |
|
|
|
/* do a raw inflate of data in hexadecimal with both inflate and inflateBack */ |
|
local int try(char *hex, char *id, int err) |
|
{ |
|
int ret; |
|
unsigned len, size; |
|
unsigned char *in, *out, *win; |
|
char *prefix; |
|
z_stream strm; |
|
|
|
/* convert to hex */ |
|
in = h2b(hex, &len); |
|
assert(in != NULL); |
|
|
|
/* allocate work areas */ |
|
size = len << 3; |
|
out = malloc(size); |
|
assert(out != NULL); |
|
win = malloc(32768); |
|
assert(win != NULL); |
|
prefix = malloc(strlen(id) + 6); |
|
assert(prefix != NULL); |
|
|
|
/* first with inflate */ |
|
strcpy(prefix, id); |
|
strcat(prefix, "-late"); |
|
mem_setup(&strm); |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit2(&strm, err < 0 ? 47 : -15); |
|
assert(ret == Z_OK); |
|
strm.avail_in = len; |
|
strm.next_in = in; |
|
do { |
|
strm.avail_out = size; |
|
strm.next_out = out; |
|
ret = inflate(&strm, Z_TREES); |
|
assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR); |
|
if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT) |
|
break; |
|
} while (strm.avail_in || strm.avail_out == 0); |
|
if (err) { |
|
assert(ret == Z_DATA_ERROR); |
|
assert(strcmp(id, strm.msg) == 0); |
|
} |
|
inflateEnd(&strm); |
|
mem_done(&strm, prefix); |
|
|
|
/* then with inflateBack */ |
|
if (err >= 0) { |
|
strcpy(prefix, id); |
|
strcat(prefix, "-back"); |
|
mem_setup(&strm); |
|
ret = inflateBackInit(&strm, 15, win); |
|
assert(ret == Z_OK); |
|
strm.avail_in = len; |
|
strm.next_in = in; |
|
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); |
|
assert(ret != Z_STREAM_ERROR); |
|
if (err) { |
|
assert(ret == Z_DATA_ERROR); |
|
assert(strcmp(id, strm.msg) == 0); |
|
} |
|
inflateBackEnd(&strm); |
|
mem_done(&strm, prefix); |
|
} |
|
|
|
/* clean up */ |
|
free(prefix); |
|
free(win); |
|
free(out); |
|
free(in); |
|
return ret; |
|
} |
|
|
|
/* cover deflate data cases in both inflate() and inflateBack() */ |
|
local void cover_inflate(void) |
|
{ |
|
try("0 0 0 0 0", "invalid stored block lengths", 1); |
|
try("3 0", "fixed", 0); |
|
try("6", "invalid block type", 1); |
|
try("1 1 0 fe ff 0", "stored", 0); |
|
try("fc 0 0", "too many length or distance symbols", 1); |
|
try("4 0 fe ff", "invalid code lengths set", 1); |
|
try("4 0 24 49 0", "invalid bit length repeat", 1); |
|
try("4 0 24 e9 ff ff", "invalid bit length repeat", 1); |
|
try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1); |
|
try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0", |
|
"invalid literal/lengths set", 1); |
|
try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1); |
|
try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1); |
|
try("2 7e ff ff", "invalid distance code", 1); |
|
try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1); |
|
|
|
/* also trailer mismatch just in inflate() */ |
|
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1); |
|
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1", |
|
"incorrect length check", -1); |
|
try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0); |
|
try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f", |
|
"long code", 0); |
|
try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0); |
|
try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c", |
|
"long distance and extra", 0); |
|
try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " |
|
"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0); |
|
inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258, |
|
Z_STREAM_END); |
|
inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK); |
|
} |
|
|
|
/* cover remaining lines in inftrees.c */ |
|
local void cover_trees(void) |
|
{ |
|
int ret; |
|
unsigned bits; |
|
unsigned short lens[16], work[16]; |
|
code *next, table[ENOUGH_DISTS]; |
|
|
|
/* we need to call inflate_table() directly in order to manifest not- |
|
enough errors, since zlib insures that enough is always enough */ |
|
for (bits = 0; bits < 15; bits++) |
|
lens[bits] = (unsigned short)(bits + 1); |
|
lens[15] = 15; |
|
next = table; |
|
bits = 15; |
|
ret = inflate_table(DISTS, lens, 16, &next, &bits, work); |
|
assert(ret == 1); |
|
next = table; |
|
bits = 1; |
|
ret = inflate_table(DISTS, lens, 16, &next, &bits, work); |
|
assert(ret == 1); |
|
fputs("inflate_table not enough errors\n", stderr); |
|
} |
|
|
|
/* cover remaining inffast.c decoding and window copying */ |
|
local void cover_fast(void) |
|
{ |
|
inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68" |
|
" ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR); |
|
inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49" |
|
" 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258, |
|
Z_DATA_ERROR); |
|
inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258, |
|
Z_DATA_ERROR); |
|
inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258, |
|
Z_DATA_ERROR); |
|
inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0", |
|
"fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR); |
|
inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK); |
|
inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0", |
|
"contiguous and wrap around window", 6, -8, 259, Z_OK); |
|
inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259, |
|
Z_STREAM_END); |
|
} |
|
|
|
int main(void) |
|
{ |
|
fprintf(stderr, "%s\n", zlibVersion()); |
|
cover_support(); |
|
cover_wrap(); |
|
cover_back(); |
|
cover_inflate(); |
|
cover_trees(); |
|
cover_fast(); |
|
return 0; |
|
}
|
|
|