mirror of https://github.com/madler/zlib.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
409 lines
15 KiB
409 lines
15 KiB
/* zran.c -- example of zlib/gzip stream indexing and random access |
|
* Copyright (C) 2005, 2012 Mark Adler |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
Version 1.1 29 Sep 2012 Mark Adler */ |
|
|
|
/* Version History: |
|
1.0 29 May 2005 First version |
|
1.1 29 Sep 2012 Fix memory reallocation error |
|
*/ |
|
|
|
/* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary() |
|
for random access of a compressed file. A file containing a zlib or gzip |
|
stream is provided on the command line. The compressed stream is decoded in |
|
its entirety, and an index built with access points about every SPAN bytes |
|
in the uncompressed output. The compressed file is left open, and can then |
|
be read randomly, having to decompress on the average SPAN/2 uncompressed |
|
bytes before getting to the desired block of data. |
|
|
|
An access point can be created at the start of any deflate block, by saving |
|
the starting file offset and bit of that block, and the 32K bytes of |
|
uncompressed data that precede that block. Also the uncompressed offset of |
|
that block is saved to provide a referece for locating a desired starting |
|
point in the uncompressed stream. build_index() works by decompressing the |
|
input zlib or gzip stream a block at a time, and at the end of each block |
|
deciding if enough uncompressed data has gone by to justify the creation of |
|
a new access point. If so, that point is saved in a data structure that |
|
grows as needed to accommodate the points. |
|
|
|
To use the index, an offset in the uncompressed data is provided, for which |
|
the latest accees point at or preceding that offset is located in the index. |
|
The input file is positioned to the specified location in the index, and if |
|
necessary the first few bits of the compressed data is read from the file. |
|
inflate is initialized with those bits and the 32K of uncompressed data, and |
|
the decompression then proceeds until the desired offset in the file is |
|
reached. Then the decompression continues to read the desired uncompressed |
|
data from the file. |
|
|
|
Another approach would be to generate the index on demand. In that case, |
|
requests for random access reads from the compressed data would try to use |
|
the index, but if a read far enough past the end of the index is required, |
|
then further index entries would be generated and added. |
|
|
|
There is some fair bit of overhead to starting inflation for the random |
|
access, mainly copying the 32K byte dictionary. So if small pieces of the |
|
file are being accessed, it would make sense to implement a cache to hold |
|
some lookahead and avoid many calls to extract() for small lengths. |
|
|
|
Another way to build an index would be to use inflateCopy(). That would |
|
not be constrained to have access points at block boundaries, but requires |
|
more memory per access point, and also cannot be saved to file due to the |
|
use of pointers in the state. The approach here allows for storage of the |
|
index in a file. |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include "zlib.h" |
|
|
|
#define local static |
|
|
|
#define SPAN 1048576L /* desired distance between access points */ |
|
#define WINSIZE 32768U /* sliding window size */ |
|
#define CHUNK 16384 /* file input buffer size */ |
|
|
|
/* access point entry */ |
|
struct point { |
|
off_t out; /* corresponding offset in uncompressed data */ |
|
off_t in; /* offset in input file of first full byte */ |
|
int bits; /* number of bits (1-7) from byte at in - 1, or 0 */ |
|
unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */ |
|
}; |
|
|
|
/* access point list */ |
|
struct access { |
|
int have; /* number of list entries filled in */ |
|
int size; /* number of list entries allocated */ |
|
struct point *list; /* allocated list */ |
|
}; |
|
|
|
/* Deallocate an index built by build_index() */ |
|
local void free_index(struct access *index) |
|
{ |
|
if (index != NULL) { |
|
free(index->list); |
|
free(index); |
|
} |
|
} |
|
|
|
/* Add an entry to the access point list. If out of memory, deallocate the |
|
existing list and return NULL. */ |
|
local struct access *addpoint(struct access *index, int bits, |
|
off_t in, off_t out, unsigned left, unsigned char *window) |
|
{ |
|
struct point *next; |
|
|
|
/* if list is empty, create it (start with eight points) */ |
|
if (index == NULL) { |
|
index = malloc(sizeof(struct access)); |
|
if (index == NULL) return NULL; |
|
index->list = malloc(sizeof(struct point) << 3); |
|
if (index->list == NULL) { |
|
free(index); |
|
return NULL; |
|
} |
|
index->size = 8; |
|
index->have = 0; |
|
} |
|
|
|
/* if list is full, make it bigger */ |
|
else if (index->have == index->size) { |
|
index->size <<= 1; |
|
next = realloc(index->list, sizeof(struct point) * index->size); |
|
if (next == NULL) { |
|
free_index(index); |
|
return NULL; |
|
} |
|
index->list = next; |
|
} |
|
|
|
/* fill in entry and increment how many we have */ |
|
next = index->list + index->have; |
|
next->bits = bits; |
|
next->in = in; |
|
next->out = out; |
|
if (left) |
|
memcpy(next->window, window + WINSIZE - left, left); |
|
if (left < WINSIZE) |
|
memcpy(next->window + left, window, WINSIZE - left); |
|
index->have++; |
|
|
|
/* return list, possibly reallocated */ |
|
return index; |
|
} |
|
|
|
/* Make one entire pass through the compressed stream and build an index, with |
|
access points about every span bytes of uncompressed output -- span is |
|
chosen to balance the speed of random access against the memory requirements |
|
of the list, about 32K bytes per access point. Note that data after the end |
|
of the first zlib or gzip stream in the file is ignored. build_index() |
|
returns the number of access points on success (>= 1), Z_MEM_ERROR for out |
|
of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a |
|
file read error. On success, *built points to the resulting index. */ |
|
local int build_index(FILE *in, off_t span, struct access **built) |
|
{ |
|
int ret; |
|
off_t totin, totout; /* our own total counters to avoid 4GB limit */ |
|
off_t last; /* totout value of last access point */ |
|
struct access *index; /* access points being generated */ |
|
z_stream strm; |
|
unsigned char input[CHUNK]; |
|
unsigned char window[WINSIZE]; |
|
|
|
/* initialize inflate */ |
|
strm.zalloc = Z_NULL; |
|
strm.zfree = Z_NULL; |
|
strm.opaque = Z_NULL; |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */ |
|
if (ret != Z_OK) |
|
return ret; |
|
|
|
/* inflate the input, maintain a sliding window, and build an index -- this |
|
also validates the integrity of the compressed data using the check |
|
information at the end of the gzip or zlib stream */ |
|
totin = totout = last = 0; |
|
index = NULL; /* will be allocated by first addpoint() */ |
|
strm.avail_out = 0; |
|
do { |
|
/* get some compressed data from input file */ |
|
strm.avail_in = fread(input, 1, CHUNK, in); |
|
if (ferror(in)) { |
|
ret = Z_ERRNO; |
|
goto build_index_error; |
|
} |
|
if (strm.avail_in == 0) { |
|
ret = Z_DATA_ERROR; |
|
goto build_index_error; |
|
} |
|
strm.next_in = input; |
|
|
|
/* process all of that, or until end of stream */ |
|
do { |
|
/* reset sliding window if necessary */ |
|
if (strm.avail_out == 0) { |
|
strm.avail_out = WINSIZE; |
|
strm.next_out = window; |
|
} |
|
|
|
/* inflate until out of input, output, or at end of block -- |
|
update the total input and output counters */ |
|
totin += strm.avail_in; |
|
totout += strm.avail_out; |
|
ret = inflate(&strm, Z_BLOCK); /* return at end of block */ |
|
totin -= strm.avail_in; |
|
totout -= strm.avail_out; |
|
if (ret == Z_NEED_DICT) |
|
ret = Z_DATA_ERROR; |
|
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR) |
|
goto build_index_error; |
|
if (ret == Z_STREAM_END) |
|
break; |
|
|
|
/* if at end of block, consider adding an index entry (note that if |
|
data_type indicates an end-of-block, then all of the |
|
uncompressed data from that block has been delivered, and none |
|
of the compressed data after that block has been consumed, |
|
except for up to seven bits) -- the totout == 0 provides an |
|
entry point after the zlib or gzip header, and assures that the |
|
index always has at least one access point; we avoid creating an |
|
access point after the last block by checking bit 6 of data_type |
|
*/ |
|
if ((strm.data_type & 128) && !(strm.data_type & 64) && |
|
(totout == 0 || totout - last > span)) { |
|
index = addpoint(index, strm.data_type & 7, totin, |
|
totout, strm.avail_out, window); |
|
if (index == NULL) { |
|
ret = Z_MEM_ERROR; |
|
goto build_index_error; |
|
} |
|
last = totout; |
|
} |
|
} while (strm.avail_in != 0); |
|
} while (ret != Z_STREAM_END); |
|
|
|
/* clean up and return index (release unused entries in list) */ |
|
(void)inflateEnd(&strm); |
|
index->list = realloc(index->list, sizeof(struct point) * index->have); |
|
index->size = index->have; |
|
*built = index; |
|
return index->size; |
|
|
|
/* return error */ |
|
build_index_error: |
|
(void)inflateEnd(&strm); |
|
if (index != NULL) |
|
free_index(index); |
|
return ret; |
|
} |
|
|
|
/* Use the index to read len bytes from offset into buf, return bytes read or |
|
negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past |
|
the end of the uncompressed data, then extract() will return a value less |
|
than len, indicating how much as actually read into buf. This function |
|
should not return a data error unless the file was modified since the index |
|
was generated. extract() may also return Z_ERRNO if there is an error on |
|
reading or seeking the input file. */ |
|
local int extract(FILE *in, struct access *index, off_t offset, |
|
unsigned char *buf, int len) |
|
{ |
|
int ret, skip; |
|
z_stream strm; |
|
struct point *here; |
|
unsigned char input[CHUNK]; |
|
unsigned char discard[WINSIZE]; |
|
|
|
/* proceed only if something reasonable to do */ |
|
if (len < 0) |
|
return 0; |
|
|
|
/* find where in stream to start */ |
|
here = index->list; |
|
ret = index->have; |
|
while (--ret && here[1].out <= offset) |
|
here++; |
|
|
|
/* initialize file and inflate state to start there */ |
|
strm.zalloc = Z_NULL; |
|
strm.zfree = Z_NULL; |
|
strm.opaque = Z_NULL; |
|
strm.avail_in = 0; |
|
strm.next_in = Z_NULL; |
|
ret = inflateInit2(&strm, -15); /* raw inflate */ |
|
if (ret != Z_OK) |
|
return ret; |
|
ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET); |
|
if (ret == -1) |
|
goto extract_ret; |
|
if (here->bits) { |
|
ret = getc(in); |
|
if (ret == -1) { |
|
ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR; |
|
goto extract_ret; |
|
} |
|
(void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits)); |
|
} |
|
(void)inflateSetDictionary(&strm, here->window, WINSIZE); |
|
|
|
/* skip uncompressed bytes until offset reached, then satisfy request */ |
|
offset -= here->out; |
|
strm.avail_in = 0; |
|
skip = 1; /* while skipping to offset */ |
|
do { |
|
/* define where to put uncompressed data, and how much */ |
|
if (offset == 0 && skip) { /* at offset now */ |
|
strm.avail_out = len; |
|
strm.next_out = buf; |
|
skip = 0; /* only do this once */ |
|
} |
|
if (offset > WINSIZE) { /* skip WINSIZE bytes */ |
|
strm.avail_out = WINSIZE; |
|
strm.next_out = discard; |
|
offset -= WINSIZE; |
|
} |
|
else if (offset != 0) { /* last skip */ |
|
strm.avail_out = (unsigned)offset; |
|
strm.next_out = discard; |
|
offset = 0; |
|
} |
|
|
|
/* uncompress until avail_out filled, or end of stream */ |
|
do { |
|
if (strm.avail_in == 0) { |
|
strm.avail_in = fread(input, 1, CHUNK, in); |
|
if (ferror(in)) { |
|
ret = Z_ERRNO; |
|
goto extract_ret; |
|
} |
|
if (strm.avail_in == 0) { |
|
ret = Z_DATA_ERROR; |
|
goto extract_ret; |
|
} |
|
strm.next_in = input; |
|
} |
|
ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */ |
|
if (ret == Z_NEED_DICT) |
|
ret = Z_DATA_ERROR; |
|
if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR) |
|
goto extract_ret; |
|
if (ret == Z_STREAM_END) |
|
break; |
|
} while (strm.avail_out != 0); |
|
|
|
/* if reach end of stream, then don't keep trying to get more */ |
|
if (ret == Z_STREAM_END) |
|
break; |
|
|
|
/* do until offset reached and requested data read, or stream ends */ |
|
} while (skip); |
|
|
|
/* compute number of uncompressed bytes read after offset */ |
|
ret = skip ? 0 : len - strm.avail_out; |
|
|
|
/* clean up and return bytes read or error */ |
|
extract_ret: |
|
(void)inflateEnd(&strm); |
|
return ret; |
|
} |
|
|
|
/* Demonstrate the use of build_index() and extract() by processing the file |
|
provided on the command line, and the extracting 16K from about 2/3rds of |
|
the way through the uncompressed output, and writing that to stdout. */ |
|
int main(int argc, char **argv) |
|
{ |
|
int len; |
|
off_t offset; |
|
FILE *in; |
|
struct access *index = NULL; |
|
unsigned char buf[CHUNK]; |
|
|
|
/* open input file */ |
|
if (argc != 2) { |
|
fprintf(stderr, "usage: zran file.gz\n"); |
|
return 1; |
|
} |
|
in = fopen(argv[1], "rb"); |
|
if (in == NULL) { |
|
fprintf(stderr, "zran: could not open %s for reading\n", argv[1]); |
|
return 1; |
|
} |
|
|
|
/* build index */ |
|
len = build_index(in, SPAN, &index); |
|
if (len < 0) { |
|
fclose(in); |
|
switch (len) { |
|
case Z_MEM_ERROR: |
|
fprintf(stderr, "zran: out of memory\n"); |
|
break; |
|
case Z_DATA_ERROR: |
|
fprintf(stderr, "zran: compressed data error in %s\n", argv[1]); |
|
break; |
|
case Z_ERRNO: |
|
fprintf(stderr, "zran: read error on %s\n", argv[1]); |
|
break; |
|
default: |
|
fprintf(stderr, "zran: error %d while building index\n", len); |
|
} |
|
return 1; |
|
} |
|
fprintf(stderr, "zran: built index with %d access points\n", len); |
|
|
|
/* use index by reading some bytes from an arbitrary offset */ |
|
offset = (index->list[index->have - 1].out << 1) / 3; |
|
len = extract(in, index, offset, buf, CHUNK); |
|
if (len < 0) |
|
fprintf(stderr, "zran: extraction failed: %s error\n", |
|
len == Z_MEM_ERROR ? "out of memory" : "input corrupted"); |
|
else { |
|
fwrite(buf, 1, len, stdout); |
|
fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset); |
|
} |
|
|
|
/* clean up and exit */ |
|
free_index(index); |
|
fclose(in); |
|
return 0; |
|
}
|
|
|