mirror of https://github.com/madler/zlib.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
396 lines
12 KiB
396 lines
12 KiB
/* infblock.c -- interpret and process block types to last block |
|
* Copyright (C) 1995-1996 Mark Adler |
|
* For conditions of distribution and use, see copyright notice in zlib.h |
|
*/ |
|
|
|
#include "zutil.h" |
|
#include "infblock.h" |
|
#include "inftrees.h" |
|
#include "infcodes.h" |
|
#include "infutil.h" |
|
|
|
struct inflate_codes_state {int dummy;}; /* for buggy compilers */ |
|
|
|
/* Table for deflate from PKZIP's appnote.txt. */ |
|
local uInt border[] = { /* Order of the bit length code lengths */ |
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
|
|
|
/* |
|
Notes beyond the 1.93a appnote.txt: |
|
|
|
1. Distance pointers never point before the beginning of the output |
|
stream. |
|
2. Distance pointers can point back across blocks, up to 32k away. |
|
3. There is an implied maximum of 7 bits for the bit length table and |
|
15 bits for the actual data. |
|
4. If only one code exists, then it is encoded using one bit. (Zero |
|
would be more efficient, but perhaps a little confusing.) If two |
|
codes exist, they are coded using one bit each (0 and 1). |
|
5. There is no way of sending zero distance codes--a dummy must be |
|
sent if there are none. (History: a pre 2.0 version of PKZIP would |
|
store blocks with no distance codes, but this was discovered to be |
|
too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
|
zero distance codes, which is sent as one code of zero bits in |
|
length. |
|
6. There are up to 286 literal/length codes. Code 256 represents the |
|
end-of-block. Note however that the static length tree defines |
|
288 codes just to fill out the Huffman codes. Codes 286 and 287 |
|
cannot be used though, since there is no length base or extra bits |
|
defined for them. Similarily, there are up to 30 distance codes. |
|
However, static trees define 32 codes (all 5 bits) to fill out the |
|
Huffman codes, but the last two had better not show up in the data. |
|
7. Unzip can check dynamic Huffman blocks for complete code sets. |
|
The exception is that a single code would not be complete (see #4). |
|
8. The five bits following the block type is really the number of |
|
literal codes sent minus 257. |
|
9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
|
(1+6+6). Therefore, to output three times the length, you output |
|
three codes (1+1+1), whereas to output four times the same length, |
|
you only need two codes (1+3). Hmm. |
|
10. In the tree reconstruction algorithm, Code = Code + Increment |
|
only if BitLength(i) is not zero. (Pretty obvious.) |
|
11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
|
12. Note: length code 284 can represent 227-258, but length code 285 |
|
really is 258. The last length deserves its own, short code |
|
since it gets used a lot in very redundant files. The length |
|
258 is special since 258 - 3 (the min match length) is 255. |
|
13. The literal/length and distance code bit lengths are read as a |
|
single stream of lengths. It is possible (and advantageous) for |
|
a repeat code (16, 17, or 18) to go across the boundary between |
|
the two sets of lengths. |
|
*/ |
|
|
|
|
|
void inflate_blocks_reset(s, z, c) |
|
inflate_blocks_statef *s; |
|
z_stream *z; |
|
uLongf *c; |
|
{ |
|
if (s->checkfn != Z_NULL) |
|
*c = s->check; |
|
if (s->mode == BTREE || s->mode == DTREE) |
|
ZFREE(z, s->sub.trees.blens); |
|
if (s->mode == CODES) |
|
{ |
|
inflate_codes_free(s->sub.decode.codes, z); |
|
inflate_trees_free(s->sub.decode.td, z); |
|
inflate_trees_free(s->sub.decode.tl, z); |
|
} |
|
s->mode = TYPE; |
|
s->bitk = 0; |
|
s->bitb = 0; |
|
s->read = s->write = s->window; |
|
if (s->checkfn != Z_NULL) |
|
z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0); |
|
Trace((stderr, "inflate: blocks reset\n")); |
|
} |
|
|
|
|
|
inflate_blocks_statef *inflate_blocks_new(z, c, w) |
|
z_stream *z; |
|
check_func c; |
|
uInt w; |
|
{ |
|
inflate_blocks_statef *s; |
|
|
|
if ((s = (inflate_blocks_statef *)ZALLOC |
|
(z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) |
|
return s; |
|
if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) |
|
{ |
|
ZFREE(z, s); |
|
return Z_NULL; |
|
} |
|
s->end = s->window + w; |
|
s->checkfn = c; |
|
s->mode = TYPE; |
|
Trace((stderr, "inflate: blocks allocated\n")); |
|
inflate_blocks_reset(s, z, &s->check); |
|
return s; |
|
} |
|
|
|
|
|
int inflate_blocks(s, z, r) |
|
inflate_blocks_statef *s; |
|
z_stream *z; |
|
int r; |
|
{ |
|
uInt t; /* temporary storage */ |
|
uLong b; /* bit buffer */ |
|
uInt k; /* bits in bit buffer */ |
|
Bytef *p; /* input data pointer */ |
|
uInt n; /* bytes available there */ |
|
Bytef *q; /* output window write pointer */ |
|
uInt m; /* bytes to end of window or read pointer */ |
|
|
|
/* copy input/output information to locals (UPDATE macro restores) */ |
|
LOAD |
|
|
|
/* process input based on current state */ |
|
while (1) switch (s->mode) |
|
{ |
|
case TYPE: |
|
NEEDBITS(3) |
|
t = (uInt)b & 7; |
|
s->last = t & 1; |
|
switch (t >> 1) |
|
{ |
|
case 0: /* stored */ |
|
Trace((stderr, "inflate: stored block%s\n", |
|
s->last ? " (last)" : "")); |
|
DUMPBITS(3) |
|
t = k & 7; /* go to byte boundary */ |
|
DUMPBITS(t) |
|
s->mode = LENS; /* get length of stored block */ |
|
break; |
|
case 1: /* fixed */ |
|
Trace((stderr, "inflate: fixed codes block%s\n", |
|
s->last ? " (last)" : "")); |
|
{ |
|
uInt bl, bd; |
|
inflate_huft *tl, *td; |
|
|
|
inflate_trees_fixed(&bl, &bd, &tl, &td); |
|
s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); |
|
if (s->sub.decode.codes == Z_NULL) |
|
{ |
|
r = Z_MEM_ERROR; |
|
LEAVE |
|
} |
|
s->sub.decode.tl = Z_NULL; /* don't try to free these */ |
|
s->sub.decode.td = Z_NULL; |
|
} |
|
DUMPBITS(3) |
|
s->mode = CODES; |
|
break; |
|
case 2: /* dynamic */ |
|
Trace((stderr, "inflate: dynamic codes block%s\n", |
|
s->last ? " (last)" : "")); |
|
DUMPBITS(3) |
|
s->mode = TABLE; |
|
break; |
|
case 3: /* illegal */ |
|
DUMPBITS(3) |
|
s->mode = BAD; |
|
z->msg = (char*)"invalid block type"; |
|
r = Z_DATA_ERROR; |
|
LEAVE |
|
} |
|
break; |
|
case LENS: |
|
NEEDBITS(32) |
|
if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) |
|
{ |
|
s->mode = BAD; |
|
z->msg = (char*)"invalid stored block lengths"; |
|
r = Z_DATA_ERROR; |
|
LEAVE |
|
} |
|
s->sub.left = (uInt)b & 0xffff; |
|
b = k = 0; /* dump bits */ |
|
Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); |
|
s->mode = s->sub.left ? STORED : TYPE; |
|
break; |
|
case STORED: |
|
if (n == 0) |
|
LEAVE |
|
NEEDOUT |
|
t = s->sub.left; |
|
if (t > n) t = n; |
|
if (t > m) t = m; |
|
zmemcpy(q, p, t); |
|
p += t; n -= t; |
|
q += t; m -= t; |
|
if ((s->sub.left -= t) != 0) |
|
break; |
|
Tracev((stderr, "inflate: stored end, %lu total out\n", |
|
z->total_out + (q >= s->read ? q - s->read : |
|
(s->end - s->read) + (q - s->window)))); |
|
s->mode = s->last ? DRY : TYPE; |
|
break; |
|
case TABLE: |
|
NEEDBITS(14) |
|
s->sub.trees.table = t = (uInt)b & 0x3fff; |
|
#ifndef PKZIP_BUG_WORKAROUND |
|
if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) |
|
{ |
|
s->mode = BAD; |
|
z->msg = (char*)"too many length or distance symbols"; |
|
r = Z_DATA_ERROR; |
|
LEAVE |
|
} |
|
#endif |
|
t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); |
|
if (t < 19) |
|
t = 19; |
|
if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) |
|
{ |
|
r = Z_MEM_ERROR; |
|
LEAVE |
|
} |
|
DUMPBITS(14) |
|
s->sub.trees.index = 0; |
|
Tracev((stderr, "inflate: table sizes ok\n")); |
|
s->mode = BTREE; |
|
case BTREE: |
|
while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) |
|
{ |
|
NEEDBITS(3) |
|
s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; |
|
DUMPBITS(3) |
|
} |
|
while (s->sub.trees.index < 19) |
|
s->sub.trees.blens[border[s->sub.trees.index++]] = 0; |
|
s->sub.trees.bb = 7; |
|
t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, |
|
&s->sub.trees.tb, z); |
|
if (t != Z_OK) |
|
{ |
|
r = t; |
|
if (r == Z_DATA_ERROR) |
|
s->mode = BAD; |
|
LEAVE |
|
} |
|
s->sub.trees.index = 0; |
|
Tracev((stderr, "inflate: bits tree ok\n")); |
|
s->mode = DTREE; |
|
case DTREE: |
|
while (t = s->sub.trees.table, |
|
s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) |
|
{ |
|
inflate_huft *h; |
|
uInt i, j, c; |
|
|
|
t = s->sub.trees.bb; |
|
NEEDBITS(t) |
|
h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); |
|
t = h->word.what.Bits; |
|
c = h->more.Base; |
|
if (c < 16) |
|
{ |
|
DUMPBITS(t) |
|
s->sub.trees.blens[s->sub.trees.index++] = c; |
|
} |
|
else /* c == 16..18 */ |
|
{ |
|
i = c == 18 ? 7 : c - 14; |
|
j = c == 18 ? 11 : 3; |
|
NEEDBITS(t + i) |
|
DUMPBITS(t) |
|
j += (uInt)b & inflate_mask[i]; |
|
DUMPBITS(i) |
|
i = s->sub.trees.index; |
|
t = s->sub.trees.table; |
|
if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || |
|
(c == 16 && i < 1)) |
|
{ |
|
s->mode = BAD; |
|
z->msg = (char*)"invalid bit length repeat"; |
|
r = Z_DATA_ERROR; |
|
LEAVE |
|
} |
|
c = c == 16 ? s->sub.trees.blens[i - 1] : 0; |
|
do { |
|
s->sub.trees.blens[i++] = c; |
|
} while (--j); |
|
s->sub.trees.index = i; |
|
} |
|
} |
|
inflate_trees_free(s->sub.trees.tb, z); |
|
s->sub.trees.tb = Z_NULL; |
|
{ |
|
uInt bl, bd; |
|
inflate_huft *tl, *td; |
|
inflate_codes_statef *c; |
|
|
|
bl = 9; /* must be <= 9 for lookahead assumptions */ |
|
bd = 6; /* must be <= 9 for lookahead assumptions */ |
|
t = s->sub.trees.table; |
|
t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), |
|
s->sub.trees.blens, &bl, &bd, &tl, &td, z); |
|
if (t != Z_OK) |
|
{ |
|
if (t == (uInt)Z_DATA_ERROR) |
|
s->mode = BAD; |
|
r = t; |
|
LEAVE |
|
} |
|
Tracev((stderr, "inflate: trees ok\n")); |
|
if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) |
|
{ |
|
inflate_trees_free(td, z); |
|
inflate_trees_free(tl, z); |
|
r = Z_MEM_ERROR; |
|
LEAVE |
|
} |
|
ZFREE(z, s->sub.trees.blens); |
|
s->sub.decode.codes = c; |
|
s->sub.decode.tl = tl; |
|
s->sub.decode.td = td; |
|
} |
|
s->mode = CODES; |
|
case CODES: |
|
UPDATE |
|
if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) |
|
return inflate_flush(s, z, r); |
|
r = Z_OK; |
|
inflate_codes_free(s->sub.decode.codes, z); |
|
inflate_trees_free(s->sub.decode.td, z); |
|
inflate_trees_free(s->sub.decode.tl, z); |
|
LOAD |
|
Tracev((stderr, "inflate: codes end, %lu total out\n", |
|
z->total_out + (q >= s->read ? q - s->read : |
|
(s->end - s->read) + (q - s->window)))); |
|
if (!s->last) |
|
{ |
|
s->mode = TYPE; |
|
break; |
|
} |
|
if (k > 7) /* return unused byte, if any */ |
|
{ |
|
Assert(k < 16, "inflate_codes grabbed too many bytes") |
|
k -= 8; |
|
n++; |
|
p--; /* can always return one */ |
|
} |
|
s->mode = DRY; |
|
case DRY: |
|
FLUSH |
|
if (s->read != s->write) |
|
LEAVE |
|
s->mode = DONE; |
|
case DONE: |
|
r = Z_STREAM_END; |
|
LEAVE |
|
case BAD: |
|
r = Z_DATA_ERROR; |
|
LEAVE |
|
default: |
|
r = Z_STREAM_ERROR; |
|
LEAVE |
|
} |
|
} |
|
|
|
|
|
int inflate_blocks_free(s, z, c) |
|
inflate_blocks_statef *s; |
|
z_stream *z; |
|
uLongf *c; |
|
{ |
|
inflate_blocks_reset(s, z, c); |
|
ZFREE(z, s->window); |
|
ZFREE(z, s); |
|
Trace((stderr, "inflate: blocks freed\n")); |
|
return Z_OK; |
|
} |
|
|
|
|
|
void inflate_set_dictionary(s, z, d, n) |
|
inflate_blocks_statef *s; |
|
z_stream *z; |
|
const Bytef *d; |
|
uInt n; |
|
{ |
|
zmemcpy((charf *)s->window, d, n); |
|
s->read = s->write = s->window + n; |
|
}
|
|
|