added inflateBackWrap() for stand-alone validation of inflateBack()

- added inflateBackWrap() for stand-alone validation of inflateBack(). Moreover, inflateBackWrap() exhibits identical functionality as in inflate().
- added comments for code revisions
- added log in ChangeLog
pull/793/head
icodywu 2 years ago
parent befb971b78
commit cfa12c8c77
  1. 1
      CMakeLists.txt
  2. 13
      ChangeLog
  3. 5
      infback.c
  4. 646
      infbackwrap.c
  5. 17
      inffast.c
  6. 3
      inftrees.h
  7. 50
      test/example.c
  8. 4
      zlib.h

@ -113,6 +113,7 @@ set(ZLIB_SRCS
gzwrite.c
inflate.c
infback.c
infbackwrap.c
inftrees.c
inffast.c
trees.c

@ -1,6 +1,19 @@
ChangeLog file for zlib
Changes in 1.2.14 (1 May 2023)
- Faster Huffman decoding using preprocessing and two separate
lookup tables (instead of a combined one previously).
- Faster LZ copy operation using overlapped memcpy of 8-byte and
special processing of cases wherein distance is within 8.
- Faster decoding of DEFLATE sequence. In particular, a while loop is
deployed to decode literal sequence.
- created inflateBackWrap() which validates inflateBack(), and also
exhibits identical functionality as inflate().This allows to compare
the efficiency between inflate() and inflateBack() under different
environments.
Changes in 1.2.13 (13 Oct 2022)
- Fix configure issue that discarded provided CC definition
- Correct incorrect inputs provided to the CRC functions

@ -458,7 +458,8 @@ void FAR *out_desc;
break;
}
Tracev((stderr, "inflate: codes ok\n"));
state->mode = LEN_;
state->mode = LEN;
/* fallthrough */
case LEN:
/* newly add the third condition to ensure the pre-hold value is flushed */
@ -590,6 +591,8 @@ void FAR *out_desc;
}
strm->next_in = next;
strm->avail_in = have;
state->hold = hold; /* newly added for restoratioin */
state->bits = bits;
return ret;
}

@ -0,0 +1,646 @@
/* infbackwrap.c -- zlib decompression
* Copyright (C) 2023-2039 Cody Wu
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "zutil.h"
#include "inftrees.h"
#include "inflate.h"
#include "inffast.h"
/* function prototypes */
local int inflateStateCheck OF((z_streamp strm));
local void fixedtables OF((struct inflate_state FAR* state));
local int updatewindow OF((z_streamp strm, const unsigned char FAR* end,
unsigned copy));
local unsigned syncsearch OF((unsigned FAR* have, const unsigned char FAR* buf,
unsigned len));
local int inflateStateCheck(strm)
z_streamp strm;
{
struct inflate_state FAR* state;
if (strm == Z_NULL ||
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
return 1;
state = (struct inflate_state FAR*)strm->state;
if (state == Z_NULL || state->strm != strm ||
state->mode < HEAD || state->mode > SYNC)
return 1;
return 0;
}
/*
Update the window with the last wsize (normally 32K) bytes written before
returning. If window does not exist yet, create it. This is only called
when a window is already in use, or when output has been written during this
inflate call, but the end of the deflate stream has not been reached yet.
It is also called to create a window for dictionary data when a dictionary
is loaded.
Providing output buffers larger than 32K to inflate() should provide a speed
advantage, since only the last 32K of output is copied to the sliding window
upon return from inflate(), and since all distances after the first 32K of
output will fall in the output data, making match copies simpler and faster.
The advantage may be dependent on the size of the processor's data caches.
*/
local int updatewindow(strm, end, copy)
z_streamp strm;
const Bytef* end;
unsigned copy;
{
struct inflate_state FAR* state;
unsigned dist;
state = (struct inflate_state FAR*)strm->state;
/* if it hasn't been done already, allocate space for the window */
if (state->window == Z_NULL) {
state->window = (unsigned char FAR*)
ZALLOC(strm, 1U << state->wbits,
sizeof(unsigned char));
if (state->window == Z_NULL) return 1;
}
/* if window not in use yet, initialize */
if (state->wsize == 0) {
state->wsize = 1U << state->wbits;
state->wnext = 0;
state->whave = 0;
}
/* copy state->wsize or less output bytes into the circular window */
if (copy >= state->wsize) {
zmemcpy(state->window, end - state->wsize, state->wsize);
state->wnext = 0;
state->whave = state->wsize;
}
else {
dist = state->wsize - state->wnext;
if (dist > copy) dist = copy;
zmemcpy(state->window + state->wnext, end - copy, dist);
copy -= dist;
if (copy) {
zmemcpy(state->window, end - copy, copy);
state->wnext = copy;
state->whave = state->wsize;
}
else {
state->wnext += dist;
if (state->wnext == state->wsize) state->wnext = 0;
if (state->whave < state->wsize) state->whave += dist;
}
}
return 0;
}
/* Macros for inflateBackWrap(), all copied from inflate.c */
/* check function to use adler32() for zlib or crc32() for gzip */
#ifdef GUNZIP
# define UPDATE_CHECK(check, buf, len) \
(state->flags ? crc32(check, buf, len) : adler32(check, buf, len))
#else
# define UPDATE_CHECK(check, buf, len) adler32(check, buf, len)
#endif
/* check macros for header crc */
#ifdef GUNZIP
# define CRC2(check, word) \
do { \
hbuf[0] = (unsigned char)(word); \
hbuf[1] = (unsigned char)((word) >> 8); \
check = crc32(check, hbuf, 2); \
} while (0)
# define CRC4(check, word) \
do { \
hbuf[0] = (unsigned char)(word); \
hbuf[1] = (unsigned char)((word) >> 8); \
hbuf[2] = (unsigned char)((word) >> 16); \
hbuf[3] = (unsigned char)((word) >> 24); \
check = crc32(check, hbuf, 4); \
} while (0)
#endif
/* Load registers with state in inflate() for speed */
#define LOAD() \
do { \
next = strm->next_in; \
have = strm->avail_in; \
hold = state->hold; \
bits = state->bits; \
} while (0)
/* Restore state from registers in inflate() */
#define RESTORE() \
do { \
strm->next_out = out_buf.bufPtr; \
strm->avail_out = out_buf.bufPtrEnd - out_buf.bufPtr; \
strm->next_in = next; \
strm->avail_in = have; \
state->hold = hold; \
state->bits = bits; \
} while (0)
/* Clear the input bit accumulator */
#define INITBITS() \
do { \
hold = 0; \
bits = 0; \
} while (0)
/* Get a byte of input into the bit accumulator, or return from inflate()
if there is no input available. */
#define PULLBYTE() \
do { \
if (have == 0) goto inf_leave; \
have--; \
hold += (unsigned long)(*next++) << bits; \
bits += 8; \
} while (0)
/* Assure that there are at least n bits in the bit accumulator. If there is
not enough available input to do that, then return from inflate(). */
#define NEEDBITS(n) \
do { \
while (bits < (unsigned)(n)) \
PULLBYTE(); \
} while (0)
/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
((unsigned)hold & ((1U << (n)) - 1))
/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
do { \
hold >>= (n); \
bits -= (unsigned)(n); \
} while (0)
/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
do { \
hold >>= bits & 7; \
bits -= bits & 7; \
} while (0)
/*
inflate()/inflateBackWrap() uses a state machine to process as much input data and generate as
much output data as possible before returning. The state machine is
structured roughly as follows:
for (;;) switch (state) {
...
case STATEn:
if (not enough input data or output space to make progress)
return;
... make progress ...
state = STATEm;
break;
...
}
so when inflate() is called again, the same case is attempted again, and
if the appropriate resources are provided, the machine proceeds to the
next state. The NEEDBITS() macro is usually the way the state evaluates
whether it can proceed or should return. NEEDBITS() does the return if
the requested bits are not available. The typical use of the BITS macros
is:
NEEDBITS(n);
... do something with BITS(n) ...
DROPBITS(n);
where NEEDBITS(n) either returns from inflate() if there isn't enough
input left to load n bits into the accumulator, or it continues. BITS(n)
gives the low n bits in the accumulator. When done, DROPBITS(n) drops
the low n bits off the accumulator. INITBITS() clears the accumulator
and sets the number of available bits to zero. BYTEBITS() discards just
enough bits to put the accumulator on a byte boundary. After BYTEBITS()
and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.
NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
if there is no input available. The decoding of variable length codes uses
PULLBYTE() directly in order to pull just enough bytes to decode the next
code, and no more.
Some states loop until they get enough input, making sure that enough
state information is maintained to continue the loop where it left off
if NEEDBITS() returns in the loop. For example, want, need, and keep
would all have to actually be part of the saved state in case NEEDBITS()
returns:
case STATEw:
while (want < need) {
NEEDBITS(n);
keep[want++] = BITS(n);
DROPBITS(n);
}
state = STATEx;
case STATEx:
As shown above, if the next state is also the next case, then the break
is omitted.
A state may also return if there is not enough output space available to
complete that state. Those states are copying stored data, writing a
literal byte, and copying a matching string.
When returning, a "goto inf_leave" is used to update the total counters,
update the check value, and determine whether any progress has been made
during that inflate() call in order to return the proper return code.
Progress is defined as a change in either strm->avail_in or strm->avail_out.
When there is a window, goto inf_leave will update the window with the last
output written. If a goto inf_leave occurs in the middle of decompression
and there is no window currently, goto inf_leave will create one and copy
output to the window for the next call of inflate().
In this implementation, the flush parameter of inflate() only affects the
return code (per zlib.h). inflate() always writes as much as possible to
strm->next_out, given the space available and the provided input--the effect
documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers
the allocation of and copying into a sliding window until necessary, which
provides the effect documented in zlib.h for Z_FINISH when the entire input
stream available. So the only thing the flush parameter actually does is:
when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it
will return Z_BUF_ERROR if it has not reached the end of the stream.
*/
/* Wrapper function of inflateBack():
* It is mostly copied from, and carries out the same functionality as, inflate().
* It allows for stand-alone validation of infateBack().
* it allows for the performance comparison of infateBackWrap() vs.
* inflate() under different system environments.
*/
typedef struct {
unsigned char* bufPtr;
unsigned char* bufPtrEnd;
} OutBuffer;
/* Call - back input function for inflateBack() */
local unsigned inb(void* desc, unsigned char** buf)
{
z_stream* strm = (z_stream*)desc;
*buf = strm->next_in;
unsigned len = strm->avail_in > UINT_MAX ? UINT_MAX : (unsigned)strm->avail_in;
strm->next_in += len;
strm->avail_in -= len;
return len;
}
/* Call - back output function for inflateBack() */
local int outb(void* desc, unsigned char* buf, unsigned len)
{
OutBuffer* outBuf = (OutBuffer*)desc;
if (outBuf->bufPtr + len > outBuf->bufPtrEnd)
return 1;
zmemcpy(outBuf->bufPtr, buf, len);
outBuf->bufPtr += len;
return 0;
}
int ZEXPORT inflateBackWrap(strm, flush)
z_streamp strm;
int flush;
{
struct inflate_state FAR* state;
z_const unsigned char FAR* next; /* next input */
unsigned have; /* available input size */
unsigned long hold; /* bit buffer */
unsigned bits; /* bits in bit buffer */
unsigned in, out; /* save starting available input and output */
unsigned copy; /* number of stored or match bytes to copy */
unsigned len; /* length to copy for repeats, bits to drop */
int ret; /* return code */
#ifdef GUNZIP
unsigned char hbuf[4]; /* buffer for gzip header crc calculation */
#endif
if (inflateStateCheck(strm) || strm->next_out == Z_NULL ||
(strm->next_in == Z_NULL && strm->avail_in != 0))
return Z_STREAM_ERROR;
unsigned char dummyDict[] = ""; /*dummy Dictionary to initialize window*/
updatewindow(strm, dummyDict, 0);
OutBuffer out_buf;
out_buf.bufPtr = strm->next_out;
out_buf.bufPtrEnd = strm->next_out + strm->avail_out;
state = (struct inflate_state FAR*)strm->state;
if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */
LOAD();
in = have;
out = strm->avail_out;
ret = Z_OK;
for (;;)
switch (state->mode) {
case HEAD:
if (state->wrap == 0) {
state->mode = TYPEDO;
break;
}
NEEDBITS(16);
#ifdef GUNZIP
if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */
if (state->wbits == 0)
state->wbits = 15;
state->check = crc32(0L, Z_NULL, 0);
CRC2(state->check, hold);
INITBITS();
state->mode = FLAGS;
break;
}
if (state->head != Z_NULL)
state->head->done = -1;
if (!(state->wrap & 1) || /* check if zlib header allowed */
#else
if (
#endif
((BITS(8) << 8) + (hold >> 8)) % 31) {
strm->msg = (char*)"incorrect header check";
state->mode = BAD;
break;
}
if (BITS(4) != Z_DEFLATED) {
strm->msg = (char*)"unknown compression method";
state->mode = BAD;
break;
}
DROPBITS(4);
len = BITS(4) + 8;
if (state->wbits == 0)
state->wbits = len;
if (len > 15 || len > state->wbits) {
strm->msg = (char*)"invalid window size";
state->mode = BAD;
break;
}
state->dmax = 1U << len;
state->flags = 0; /* indicate zlib header */
Tracev((stderr, "inflate: zlib header ok\n"));
strm->adler = state->check = adler32(0L, Z_NULL, 0);
state->mode = hold & 0x200 ? DICTID : TYPE;
INITBITS();
break;
#ifdef GUNZIP
case FLAGS:
NEEDBITS(16);
state->flags = (int)(hold);
if ((state->flags & 0xff) != Z_DEFLATED) {
strm->msg = (char*)"unknown compression method";
state->mode = BAD;
break;
}
if (state->flags & 0xe000) {
strm->msg = (char*)"unknown header flags set";
state->mode = BAD;
break;
}
if (state->head != Z_NULL)
state->head->text = (int)((hold >> 8) & 1);
if ((state->flags & 0x0200) && (state->wrap & 4))
CRC2(state->check, hold);
INITBITS();
state->mode = TIME;
/* fallthrough */
case TIME:
NEEDBITS(32);
if (state->head != Z_NULL)
state->head->time = hold;
if ((state->flags & 0x0200) && (state->wrap & 4))
CRC4(state->check, hold);
INITBITS();
state->mode = OS;
/* fallthrough */
case OS:
NEEDBITS(16);
if (state->head != Z_NULL) {
state->head->xflags = (int)(hold & 0xff);
state->head->os = (int)(hold >> 8);
}
if ((state->flags & 0x0200) && (state->wrap & 4))
CRC2(state->check, hold);
INITBITS();
state->mode = EXLEN;
/* fallthrough */
case EXLEN:
if (state->flags & 0x0400) {
NEEDBITS(16);
state->length = (unsigned)(hold);
if (state->head != Z_NULL)
state->head->extra_len = (unsigned)hold;
if ((state->flags & 0x0200) && (state->wrap & 4))
CRC2(state->check, hold);
INITBITS();
}
else if (state->head != Z_NULL)
state->head->extra = Z_NULL;
state->mode = EXTRA;
/* fallthrough */
case EXTRA:
if (state->flags & 0x0400) {
copy = state->length;
if (copy > have) copy = have;
if (copy) {
if (state->head != Z_NULL &&
state->head->extra != Z_NULL &&
(len = state->head->extra_len - state->length) <
state->head->extra_max) {
zmemcpy(state->head->extra + len, next,
len + copy > state->head->extra_max ?
state->head->extra_max - len : copy);
}
if ((state->flags & 0x0200) && (state->wrap & 4))
state->check = crc32(state->check, next, copy);
have -= copy;
next += copy;
state->length -= copy;
}
if (state->length) goto inf_leave;
}
state->length = 0;
state->mode = NAME;
/* fallthrough */
case NAME:
if (state->flags & 0x0800) {
if (have == 0) goto inf_leave;
copy = 0;
do {
len = (unsigned)(next[copy++]);
if (state->head != Z_NULL &&
state->head->name != Z_NULL &&
state->length < state->head->name_max)
state->head->name[state->length++] = (Bytef)len;
} while (len && copy < have);
if ((state->flags & 0x0200) && (state->wrap & 4))
state->check = crc32(state->check, next, copy);
have -= copy;
next += copy;
if (len) goto inf_leave;
}
else if (state->head != Z_NULL)
state->head->name = Z_NULL;
state->length = 0;
state->mode = COMMENT;
/* fallthrough */
case COMMENT:
if (state->flags & 0x1000) {
if (have == 0) goto inf_leave;
copy = 0;
do {
len = (unsigned)(next[copy++]);
if (state->head != Z_NULL &&
state->head->comment != Z_NULL &&
state->length < state->head->comm_max)
state->head->comment[state->length++] = (Bytef)len;
} while (len && copy < have);
if ((state->flags & 0x0200) && (state->wrap & 4))
state->check = crc32(state->check, next, copy);
have -= copy;
next += copy;
if (len) goto inf_leave;
}
else if (state->head != Z_NULL)
state->head->comment = Z_NULL;
state->mode = HCRC;
/* fallthrough */
case HCRC:
if (state->flags & 0x0200) {
NEEDBITS(16);
if ((state->wrap & 4) && hold != (state->check & 0xffff)) {
strm->msg = (char*)"header crc mismatch";
state->mode = BAD;
break;
}
INITBITS();
}
if (state->head != Z_NULL) {
state->head->hcrc = (int)((state->flags >> 9) & 1);
state->head->done = 1;
}
strm->adler = state->check = crc32(0L, Z_NULL, 0);
state->mode = TYPE;
break;
#endif
case DICTID:
NEEDBITS(32);
strm->adler = state->check = ZSWAP32(hold);
INITBITS();
state->mode = DICT;
/* fallthrough */
case DICT:
if (state->havedict == 0) {
RESTORE();
return Z_NEED_DICT;
}
strm->adler = state->check = adler32(0L, Z_NULL, 0);
state->mode = TYPE;
/* fallthrough */
case TYPE:
if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;
/* Call inflateBack() */
RESTORE();
ret = inflateBack(strm, inb, strm, outb, &out_buf);
if (ret == Z_DATA_ERROR) {
state->mode = BAD;
break;
}
LOAD();
state->mode = CHECK;
/* fall through */
case CHECK:
if (state->wrap) {
NEEDBITS(32);
strm->next_out = out_buf.bufPtr;
strm->avail_out = out_buf.bufPtrEnd - out_buf.bufPtr;
out -= strm->avail_out;
strm->total_out += out;
state->total += out;
if ((state->wrap & 4) && out)
strm->adler = state->check =
UPDATE_CHECK(state->check, strm->next_out - out, out);
out = strm->avail_out;
if ((state->wrap & 4) && (
#ifdef GUNZIP
state->flags ? hold :
#endif
ZSWAP32(hold)) != state->check) {
strm->msg = (char*)"incorrect data check";
state->mode = BAD;
break;
}
INITBITS();
Tracev((stderr, "inflate: check matches trailer\n"));
}
#ifdef GUNZIP
state->mode = LENGTH;
/* fallthrough */
case LENGTH:
if (state->wrap && state->flags) {
NEEDBITS(32);
if ((state->wrap & 4) && hold != (state->total & 0xffffffff)) {
strm->msg = (char*)"incorrect length check";
state->mode = BAD;
break;
}
INITBITS();
Tracev((stderr, "inflate: length matches trailer\n"));
}
#endif
state->mode = DONE;
/* fallthrough */
case DONE:
ret = Z_STREAM_END;
goto inf_leave;
case BAD:
ret = Z_DATA_ERROR;
goto inf_leave;
case MEM:
return Z_MEM_ERROR;
case SYNC:
/* fallthrough */
default:
return Z_STREAM_ERROR;
}
/*Return from inflate()/inflateBackWrap(), updating the total counts and the check value.
If there was no progress during the inflate() call, return a buffer
error. Call updatewindow() to create and/or update the window state.
Note: a memory error from inflate() is non-recoverable.
*/
inf_leave:
RESTORE();
if (state->wsize || (out != strm->avail_out && state->mode < BAD &&
(state->mode < CHECK || flush != Z_FINISH)))
if (updatewindow(strm, strm->next_out, out - strm->avail_out)) {
state->mode = MEM;
return Z_MEM_ERROR;
}
in -= strm->avail_in;
out -= strm->avail_out;
strm->total_in += in;
strm->total_out += out;
state->total += out;
if ((state->wrap & 4) && out)
strm->adler = state->check =
UPDATE_CHECK(state->check, strm->next_out - out, out);
strm->data_type = (int)state->bits + (state->last ? 64 : 0) +
(state->mode == TYPE ? 128 : 0) +
(state->mode == LEN_ || state->mode == COPY_ ? 256 : 0);
if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
ret = Z_BUF_ERROR;
return ret;
}

@ -27,7 +27,7 @@
state->mode == LEN
strm->avail_in >= 8
strm->avail_out >= 266
strm->avail_out >= 8
start >= strm->avail_out
state->usedBits < 8
@ -103,6 +103,7 @@ static size_t MemSwap8(size_t in)
#endif
}
/* Fast read "size_t val" in the Little Endian order */
static size_t MemReadLEST(const void* memPtr)
{
size_t val;
@ -136,6 +137,11 @@ static size_t MemReadLEST(const void* memPtr)
dist = here->val + (((hold >> usedBits) & ((1 << here->allBits) - 1)) >> here->hufBits); \
}
/* Optimized LZ copy operation
* 1. fast overlapped memcpy-8-byte
* 2. memset for single-run
* 3. initiated with 2-byte copy among distances 2-7
*/
#define FAST_LZ_COPY() { \
if (likely(dist >= 8)) { MemWildCopy_Overlap(out, from, outStop); } \
else if (dist == 1) { memset(out, *(out - 1), len); } \
@ -205,7 +211,9 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
whave = state->whave;
wnext = state->wnext;
window = state->window;
if (window + winSize == beg) { /* window is continuous toward output stream */
/* If window is continuous toward output stream, then treat as expanded output stream */
if ( beg == window + winSize && wnext==0 && whave == winSize) {
whave = 0;
winSize = 0;
beg = window;
@ -230,6 +238,7 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
HUFF_DECODE_LEN();
while ((here->val & 0xFF00) == 0x8000) {
/* while -- an uncompressed litereral is likely followed by another literal */
if (unlikely(out >= litEnd)) goto WrapUp;
*out++ = (unsigned char)(here->val);
if (DEBUG) {
@ -237,7 +246,7 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
}
usedBits += here->allBits;
if (usedBits > sizeof(state->hold) * 8 - MAX_HUFBITS) { /* the max literal bit length along with extension is 15+5=20 */
if (usedBits > sizeof(state->hold) * 8 - MAX_HUFBITS) {
in += usedBits >> 3; /* update the input stream pointer */
usedBits &= 7;
if (unlikely(in > last)) {
@ -248,7 +257,7 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
HUFF_DECODE_LEN();
}
if (likely((here->val & 0x8000) == 0)) {
if (likely((here->val & 0x8000) == 0)) { /* LZ copy */
in += usedBits >> 3; /* update the input stream pointer */
usedBits &= 7;
if (unlikely(in > last)) { /* insufficient data, reverse update*/

@ -8,6 +8,9 @@
subject to change. Applications should only use zlib.h.
*/
/* XXX_ROOT is the number of the first look-up bits;
* ENOUGH_XXX is the space for the second loop-up
*/
#define LLEN_ROOT 7
#define LEN_ROOT 11
#define DIST_ROOT 8

@ -369,6 +369,48 @@ void test_large_inflate(compr, comprLen, uncompr, uncomprLen)
}
}
/* ===========================================================================
* Test inflateBackWrap() with large buffers
*/
void test_large_inflateBackWrap(compr, comprLen, uncompr, uncomprLen)
Byte* compr, * uncompr;
uLong comprLen, uncomprLen;
{
int err;
z_stream d_stream; /* decompression stream */
strcpy((char*)uncompr, "garbage");
d_stream.zalloc = zalloc;
d_stream.zfree = zfree;
d_stream.opaque = (voidpf)0;
d_stream.next_in = compr;
d_stream.avail_in = (uInt)comprLen;
err = inflateInit(&d_stream);
CHECK_ERR(err, "inflateInit");
for (;;) {
d_stream.next_out = uncompr; /* discard the output */
d_stream.avail_out = (uInt)uncomprLen;
err = inflateBackWrap(&d_stream, Z_NO_FLUSH);
if (err == Z_STREAM_END) break;
CHECK_ERR(err, "large inflate");
}
err = inflateEnd(&d_stream);
CHECK_ERR(err, "inflateEnd");
if (d_stream.total_out != 100000) {
fprintf(stderr, "bad large inflateBack: %ld\n", d_stream.total_out);
exit(1);
}
else {
printf("large_inflateBack(): OK\n");
}
}
/* ===========================================================================
* Test deflate() with full flush
*/
@ -651,7 +693,7 @@ int main(argc, argv)
printf("zlib version %s = 0x%04x, compile flags = 0x%lx\n",
ZLIB_VERSION, ZLIB_VERNUM, zlibCompileFlags());
test_zlib();
//test_zlib();
compr = (Byte*)calloc((uInt)comprLen, 1);
uncompr = (Byte*)calloc((uInt)uncomprLen, 1);
@ -679,6 +721,12 @@ int main(argc, argv)
test_large_deflate(compr, comprLen, uncompr, uncomprLen);
test_large_inflate(compr, comprLen, uncompr, uncomprLen);
uLong uncomprLen_infback = comprLen * 4;
Byte* uncompr_infback;
uncompr_infback = (Byte*)calloc((uInt)uncomprLen_infback, 1);
test_large_inflateBackWrap(compr, comprLen, uncompr_infback, uncomprLen_infback);
free(uncompr_infback);
test_flush(compr, &comprLen);
test_sync(compr, comprLen, uncompr, uncomprLen);
comprLen = uncomprLen;

@ -1173,6 +1173,10 @@ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
state was inconsistent.
*/
ZEXTERN int ZEXPORT inflateBackWrap OF((z_streamp strm, int flush));
/* TBD */
ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
/* Return flags indicating compile-time options.

Loading…
Cancel
Save