|
|
|
@ -1,7 +1,7 @@ |
|
|
|
|
/* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
|
|
|
|
* all possible valid and complete prefix codes, subject to a length limit. |
|
|
|
|
* Copyright (C) 2007, 2008, 2012, 2018 Mark Adler |
|
|
|
|
* Version 1.5 1 August 2018 Mark Adler |
|
|
|
|
* Version 1.5 5 August 2018 Mark Adler |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
/* Version history:
|
|
|
|
@ -17,8 +17,8 @@ |
|
|
|
|
1.4 18 Aug 2012 Avoid shifts more than bits in type (caused endless loop!) |
|
|
|
|
Clean up comparisons of different types |
|
|
|
|
Clean up code indentation |
|
|
|
|
1.5 1 Aug 2018 Clean up code style, formatting, and comments |
|
|
|
|
Use inline function instead of macro for index |
|
|
|
|
1.5 5 Aug 2018 Clean up code style, formatting, and comments |
|
|
|
|
Show all the codes for the maximum, and only the maximum |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -39,16 +39,17 @@ |
|
|
|
|
assign all portions of the remaining symbols to that code length that |
|
|
|
|
preserve the properties of a correct and eventually complete code. Those |
|
|
|
|
properties are: we cannot use more bit patterns than are available; and when |
|
|
|
|
all the symbols are used, there are exactly zero possible bit patterns |
|
|
|
|
remaining. |
|
|
|
|
all the symbols are used, there are exactly zero possible bit patterns left |
|
|
|
|
unused. |
|
|
|
|
|
|
|
|
|
The inflate Huffman decoding algorithm uses two-level lookup tables for |
|
|
|
|
speed. There is a single first-level table to decode codes up to root bits |
|
|
|
|
in length (root == 9 in the current inflate implementation). The table has 1 |
|
|
|
|
<< root entries and is indexed by the next root bits of input. Codes shorter |
|
|
|
|
than root bits have replicated table entries, so that the correct entry is |
|
|
|
|
in length (root == 9 for literal/length codes and root == 6 for distance |
|
|
|
|
codes, in the current inflate implementation). The base table has 1 << root |
|
|
|
|
entries and is indexed by the next root bits of input. Codes shorter than |
|
|
|
|
root bits have replicated table entries, so that the correct entry is |
|
|
|
|
pointed to regardless of the bits that follow the short code. If the code is |
|
|
|
|
longer than root bits, then the table entry points to a second- level table. |
|
|
|
|
longer than root bits, then the table entry points to a second-level table. |
|
|
|
|
The size of that table is determined by the longest code with that root-bit |
|
|
|
|
prefix. If that longest code has length len, then the table has size 1 << |
|
|
|
|
(len - root), to index the remaining bits in that set of codes. Each |
|
|
|
@ -62,7 +63,7 @@ |
|
|
|
|
the log2 of the number of symbols), where the shortest code has more bits |
|
|
|
|
than root. In that case, root is increased to the length of the shortest |
|
|
|
|
code. This program, by design, does not handle that case, so it is verified |
|
|
|
|
that the number of symbols is less than 2^(root + 1). |
|
|
|
|
that the number of symbols is less than 1 << (root + 1). |
|
|
|
|
|
|
|
|
|
In order to speed up the examination (by about ten orders of magnitude for |
|
|
|
|
the default arguments), the intermediate states in the build-up of a code |
|
|
|
@ -87,34 +88,36 @@ |
|
|
|
|
need to be examined to cover all of the possible table memory usage cases |
|
|
|
|
for the default arguments of 286 symbols limited to 15-bit codes. |
|
|
|
|
|
|
|
|
|
Note that an unsigned long long type is used for counting. It is quite easy |
|
|
|
|
to exceed the capacity of an eight-byte integer with a large number of |
|
|
|
|
symbols and a large maximum code length, so multiple-precision arithmetic |
|
|
|
|
would need to replace the unsigned long long arithmetic in that case. This |
|
|
|
|
program will abort if an overflow occurs. The big_t type identifies where |
|
|
|
|
the counting takes place. |
|
|
|
|
|
|
|
|
|
An unsigned long long type is also used for calculating the number of |
|
|
|
|
possible codes remaining at the maximum length. This limits the maximum code |
|
|
|
|
length to the number of bits in a long long minus the number of bits needed |
|
|
|
|
to represent the symbols in a flat code. The code_t type identifies where |
|
|
|
|
the bit pattern counting takes place. |
|
|
|
|
Note that the uintmax_t type is used for counting. It is quite easy to |
|
|
|
|
exceed the capacity of an eight-byte integer with a large number of symbols |
|
|
|
|
and a large maximum code length, so multiple-precision arithmetic would need |
|
|
|
|
to replace the integer arithmetic in that case. This program will abort if |
|
|
|
|
an overflow occurs. The big_t type identifies where the counting takes |
|
|
|
|
place. |
|
|
|
|
|
|
|
|
|
The uintmax_t type is also used for calculating the number of possible codes |
|
|
|
|
remaining at the maximum length. This limits the maximum code length to the |
|
|
|
|
number of bits in a long long minus the number of bits needed to represent |
|
|
|
|
the symbols in a flat code. The code_t type identifies where the bit-pattern |
|
|
|
|
counting takes place. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
#include <stdio.h> |
|
|
|
|
#include <stdlib.h> |
|
|
|
|
#include <string.h> |
|
|
|
|
#include <stdarg.h> |
|
|
|
|
#include <stdint.h> |
|
|
|
|
#include <assert.h> |
|
|
|
|
|
|
|
|
|
#define local static |
|
|
|
|
|
|
|
|
|
// Special data types.
|
|
|
|
|
typedef unsigned long long big_t; // type for code counting
|
|
|
|
|
#define PRIbig "llu" // printf format for big_t
|
|
|
|
|
typedef unsigned long long code_t; // type for bit pattern counting
|
|
|
|
|
struct tab { // type for been here check
|
|
|
|
|
size_t len; // length of bit vector in octets
|
|
|
|
|
char *vec; // allocated bit vector
|
|
|
|
|
typedef uintmax_t big_t; // type for code counting
|
|
|
|
|
#define PRIbig "ju" // printf format for big_t
|
|
|
|
|
typedef uintmax_t code_t; // type for bit pattern counting
|
|
|
|
|
struct tab { // type for been-here check
|
|
|
|
|
size_t len; // allocated length of bit vector in octets
|
|
|
|
|
char *vec; // allocated bit vector
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/* The array for saving results, num[], is indexed with this triplet:
|
|
|
|
@ -161,59 +164,101 @@ struct tab { // type for been here check |
|
|
|
|
array. Since the range of mem is expected in the default case to be about |
|
|
|
|
ten times larger than the range of rem, the array is skewed to reduce the |
|
|
|
|
memory usage, with eight times the range for mem than for rem. See the |
|
|
|
|
calculations for offset and bit in beenhere() for the details. |
|
|
|
|
calculations for offset and bit in been_here() for the details. |
|
|
|
|
|
|
|
|
|
For the deflate example of 286 symbols limited to 15-bit codes, the bit |
|
|
|
|
vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[] |
|
|
|
|
array itself. |
|
|
|
|
vectors grow to total 5.5 MB, in addition to the 4.3 MB done array itself. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
// Type for a variable-length, allocated string.
|
|
|
|
|
typedef struct { |
|
|
|
|
char *str; // pointer to allocated string
|
|
|
|
|
size_t size; // size of allocation
|
|
|
|
|
size_t len; // length of string, not including terminating zero
|
|
|
|
|
} string_t; |
|
|
|
|
|
|
|
|
|
// Clear a string_t.
|
|
|
|
|
local void string_clear(string_t *s) { |
|
|
|
|
s->str[0] = 0; |
|
|
|
|
s->len = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Initialize a string_t.
|
|
|
|
|
local void string_init(string_t *s) { |
|
|
|
|
s->size = 16; |
|
|
|
|
s->str = malloc(s->size); |
|
|
|
|
assert(s->str != NULL && "out of memory"); |
|
|
|
|
string_clear(s); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Release the allocation of a string_t.
|
|
|
|
|
local void string_free(string_t *s) { |
|
|
|
|
free(s->str); |
|
|
|
|
s->str = NULL; |
|
|
|
|
s->size = 0; |
|
|
|
|
s->len = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Save the results of printf with fmt and the subsequent argument list to s.
|
|
|
|
|
// Each call appends to s. The allocated space for s is increased as needed.
|
|
|
|
|
local void string_printf(string_t *s, char *fmt, ...) { |
|
|
|
|
va_list ap; |
|
|
|
|
va_start(ap, fmt); |
|
|
|
|
size_t len = s->len; |
|
|
|
|
int ret = vsnprintf(s->str + len, s->size - len, fmt, ap); |
|
|
|
|
assert(ret >= 0 && "out of memory"); |
|
|
|
|
s->len += ret; |
|
|
|
|
if (s->size < s->len + 1) { |
|
|
|
|
do { |
|
|
|
|
s->size <<= 1; |
|
|
|
|
assert(s->size != 0 && "overflow"); |
|
|
|
|
} while (s->size < s->len + 1); |
|
|
|
|
s->str = realloc(s->str, s->size); |
|
|
|
|
assert(s->str != NULL && "out of memory"); |
|
|
|
|
vsnprintf(s->str + len, s->size - len, fmt, ap); |
|
|
|
|
} |
|
|
|
|
va_end(ap); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Globals to avoid propagating constants or constant pointers recursively.
|
|
|
|
|
struct { |
|
|
|
|
int max; // maximum allowed bit length for the codes
|
|
|
|
|
int root; // size of base code table in bits
|
|
|
|
|
int large; // largest code table so far
|
|
|
|
|
size_t size; // number of elements in num and done
|
|
|
|
|
big_t tot; // total number of codes with maximum tables size
|
|
|
|
|
string_t out; // display of subcodes for maximum tables size
|
|
|
|
|
int *code; // number of symbols assigned to each bit length
|
|
|
|
|
big_t *num; // saved results array for code counting
|
|
|
|
|
struct tab *done; // states already evaluated array
|
|
|
|
|
} g; |
|
|
|
|
|
|
|
|
|
// Index function for num[] and done[].
|
|
|
|
|
local inline size_t map(int i, int j, int k) { |
|
|
|
|
return k - 1 + ((size_t)((i - 1) >> 1) * ((i - 2) >> 1) + (j >> 1) - 1) * |
|
|
|
|
(g.max - 1); |
|
|
|
|
local inline size_t map(int syms, int left, int len) { |
|
|
|
|
return ((size_t)((syms - 1) >> 1) * ((syms - 2) >> 1) + |
|
|
|
|
(left >> 1) - 1) * (g.max - 1) + |
|
|
|
|
len - 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Free allocated space. Uses globals code, num, and done.
|
|
|
|
|
// Free allocated space in globals.
|
|
|
|
|
local void cleanup(void) { |
|
|
|
|
size_t n; |
|
|
|
|
|
|
|
|
|
if (g.done != NULL) { |
|
|
|
|
for (n = 0; n < g.size; n++) |
|
|
|
|
for (size_t n = 0; n < g.size; n++) |
|
|
|
|
if (g.done[n].len) |
|
|
|
|
free(g.done[n].vec); |
|
|
|
|
free(g.done); |
|
|
|
|
g.size = 0; |
|
|
|
|
free(g.done); g.done = NULL; |
|
|
|
|
} |
|
|
|
|
if (g.num != NULL) |
|
|
|
|
free(g.num); |
|
|
|
|
if (g.code != NULL) |
|
|
|
|
free(g.code); |
|
|
|
|
free(g.num); g.num = NULL; |
|
|
|
|
free(g.code); g.code = NULL; |
|
|
|
|
string_free(&g.out); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Return the number of possible prefix codes using bit patterns of lengths len
|
|
|
|
|
// through max inclusive, coding syms symbols, with left bit patterns of length
|
|
|
|
|
// len unused -- return -1 if there is an overflow in the counting. Keep a
|
|
|
|
|
// record of previous results in num to prevent repeating the same calculation.
|
|
|
|
|
// Uses the globals max and num.
|
|
|
|
|
local big_t count(int syms, int len, int left) { |
|
|
|
|
big_t sum; // number of possible codes from this juncture
|
|
|
|
|
big_t got; // value returned from count()
|
|
|
|
|
int least; // least number of syms to use at this juncture
|
|
|
|
|
int most; // most number of syms to use at this juncture
|
|
|
|
|
int use; // number of bit patterns to use in next call
|
|
|
|
|
size_t index; // index of this case in *num
|
|
|
|
|
|
|
|
|
|
local big_t count(int syms, int left, int len) { |
|
|
|
|
// see if only one possible code
|
|
|
|
|
if (syms == left) |
|
|
|
|
return 1; |
|
|
|
@ -222,30 +267,30 @@ local big_t count(int syms, int len, int left) { |
|
|
|
|
assert(syms > left && left > 0 && len < g.max); |
|
|
|
|
|
|
|
|
|
// see if we've done this one already
|
|
|
|
|
index = map(syms, left, len); |
|
|
|
|
got = g.num[index]; |
|
|
|
|
size_t index = map(syms, left, len); |
|
|
|
|
big_t got = g.num[index]; |
|
|
|
|
if (got) |
|
|
|
|
return got; // we have -- return the saved result
|
|
|
|
|
|
|
|
|
|
// we need to use at least this many bit patterns so that the code won't be
|
|
|
|
|
// incomplete at the next length (more bit patterns than symbols)
|
|
|
|
|
least = (left << 1) - syms; |
|
|
|
|
int least = (left << 1) - syms; |
|
|
|
|
if (least < 0) |
|
|
|
|
least = 0; |
|
|
|
|
|
|
|
|
|
// we can use at most this many bit patterns, lest there not be enough
|
|
|
|
|
// available for the remaining symbols at the maximum length (if there were
|
|
|
|
|
// no limit to the code length, this would become: most = left - 1)
|
|
|
|
|
most = (((code_t)left << (g.max - len)) - syms) / |
|
|
|
|
(((code_t)1 << (g.max - len)) - 1); |
|
|
|
|
int most = (((code_t)left << (g.max - len)) - syms) / |
|
|
|
|
(((code_t)1 << (g.max - len)) - 1); |
|
|
|
|
|
|
|
|
|
// count all possible codes from this juncture and add them up
|
|
|
|
|
sum = 0; |
|
|
|
|
for (use = least; use <= most; use++) { |
|
|
|
|
got = count(syms - use, len + 1, (left - use) << 1); |
|
|
|
|
big_t sum = 0; |
|
|
|
|
for (int use = least; use <= most; use++) { |
|
|
|
|
got = count(syms - use, (left - use) << 1, len + 1); |
|
|
|
|
sum += got; |
|
|
|
|
if (got == (big_t)0 - 1 || sum < got) // overflow
|
|
|
|
|
return (big_t)0 - 1; |
|
|
|
|
if (got == (big_t)-1 || sum < got) // overflow
|
|
|
|
|
return (big_t)-1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// verify that all recursive calls are productive
|
|
|
|
@ -259,23 +304,19 @@ local big_t count(int syms, int len, int left) { |
|
|
|
|
// Return true if we've been here before, set to true if not. Set a bit in a
|
|
|
|
|
// bit vector to indicate visiting this state. Each (syms,len,left) state has a
|
|
|
|
|
// variable size bit vector indexed by (mem,rem). The bit vector is lengthened
|
|
|
|
|
// if needed to allow setting the (mem,rem) bit.
|
|
|
|
|
local int beenhere(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
size_t index; // index for this state's bit vector
|
|
|
|
|
size_t offset; // offset in this state's bit vector
|
|
|
|
|
int bit; // mask for this state's bit
|
|
|
|
|
size_t length; // length of the bit vector in bytes
|
|
|
|
|
char *vector; // new or enlarged bit vector
|
|
|
|
|
|
|
|
|
|
// as needed to allow setting the (mem,rem) bit.
|
|
|
|
|
local int been_here(int syms, int left, int len, int mem, int rem) { |
|
|
|
|
// point to vector for (syms,left,len), bit in vector for (mem,rem)
|
|
|
|
|
index = map(syms, left, len); |
|
|
|
|
mem -= 1 << g.root; |
|
|
|
|
offset = (mem >> 3) + rem; |
|
|
|
|
size_t index = map(syms, left, len); |
|
|
|
|
mem -= 1 << g.root; // mem always includes the root table
|
|
|
|
|
mem >>= 1; // mem and rem are always even
|
|
|
|
|
rem >>= 1; |
|
|
|
|
size_t offset = (mem >> 3) + rem; |
|
|
|
|
offset = ((offset * (offset + 1)) >> 1) + rem; |
|
|
|
|
bit = 1 << (mem & 7); |
|
|
|
|
int bit = 1 << (mem & 7); |
|
|
|
|
|
|
|
|
|
// see if we've been here
|
|
|
|
|
length = g.done[index].len; |
|
|
|
|
size_t length = g.done[index].len; |
|
|
|
|
if (offset < length && (g.done[index].vec[offset] & bit) != 0) |
|
|
|
|
return 1; // done this!
|
|
|
|
|
|
|
|
|
@ -284,29 +325,23 @@ local int beenhere(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
// see if we need to lengthen the vector in order to set the bit
|
|
|
|
|
if (length <= offset) { |
|
|
|
|
// if we have one already, enlarge it, zero out the appended space
|
|
|
|
|
char *vector; |
|
|
|
|
if (length) { |
|
|
|
|
do { |
|
|
|
|
length <<= 1; |
|
|
|
|
} while (length <= offset); |
|
|
|
|
vector = realloc(g.done[index].vec, length); |
|
|
|
|
if (vector != NULL) |
|
|
|
|
memset(vector + g.done[index].len, 0, |
|
|
|
|
length - g.done[index].len); |
|
|
|
|
assert(vector != NULL && "out of memory"); |
|
|
|
|
memset(vector + g.done[index].len, 0, length - g.done[index].len); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// otherwise we need to make a new vector and zero it out
|
|
|
|
|
else { |
|
|
|
|
length = 1 << (len - g.root); |
|
|
|
|
length = 16; |
|
|
|
|
while (length <= offset) |
|
|
|
|
length <<= 1; |
|
|
|
|
vector = calloc(length, sizeof(char)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// in either case, bail if we can't get the memory
|
|
|
|
|
if (vector == NULL) { |
|
|
|
|
fputs("abort: unable to allocate enough memory\n", stderr); |
|
|
|
|
cleanup(); |
|
|
|
|
exit(1); |
|
|
|
|
vector = calloc(length, 1); |
|
|
|
|
assert(vector != NULL && "out of memory"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// install the new vector
|
|
|
|
@ -322,13 +357,8 @@ local int beenhere(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
// Examine all possible codes from the given node (syms, len, left). Compute
|
|
|
|
|
// the amount of memory required to build inflate's decoding tables, where the
|
|
|
|
|
// number of code structures used so far is mem, and the number remaining in
|
|
|
|
|
// the current sub-table is rem. Uses the globals max, code, root, large, and
|
|
|
|
|
// done.
|
|
|
|
|
local void examine(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
int least; // least number of syms to use at this juncture
|
|
|
|
|
int most; // most number of syms to use at this juncture
|
|
|
|
|
int use; // number of bit patterns to use in next call
|
|
|
|
|
|
|
|
|
|
// the current sub-table is rem.
|
|
|
|
|
local void examine(int syms, int left, int len, int mem, int rem) { |
|
|
|
|
// see if we have a complete code
|
|
|
|
|
if (syms == left) { |
|
|
|
|
// set the last code entry
|
|
|
|
@ -342,15 +372,32 @@ local void examine(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
} |
|
|
|
|
assert(rem == left); |
|
|
|
|
|
|
|
|
|
// if this is a new maximum, show the entries used and the sub-code
|
|
|
|
|
if (mem > g.large) { |
|
|
|
|
g.large = mem; |
|
|
|
|
printf("max %d: ", mem); |
|
|
|
|
for (use = g.root + 1; use <= g.max; use++) |
|
|
|
|
if (g.code[use]) |
|
|
|
|
printf("%d[%d] ", g.code[use], use); |
|
|
|
|
putchar('\n'); |
|
|
|
|
fflush(stdout); |
|
|
|
|
// if this is at the maximum, show the sub-code
|
|
|
|
|
if (mem >= g.large) { |
|
|
|
|
// if this is a new maximum, update the maximum and clear out the
|
|
|
|
|
// printed sub-codes from the previous maximum
|
|
|
|
|
if (mem > g.large) { |
|
|
|
|
g.large = mem; |
|
|
|
|
string_clear(&g.out); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compute the starting state for this sub-code
|
|
|
|
|
syms = 0; |
|
|
|
|
left = 1 << g.max; |
|
|
|
|
for (int bits = g.max; bits > g.root; bits--) { |
|
|
|
|
syms += g.code[bits]; |
|
|
|
|
left -= g.code[bits]; |
|
|
|
|
assert((left & 1) == 0); |
|
|
|
|
left >>= 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// print the starting state and the resulting sub-code to g.out
|
|
|
|
|
string_printf(&g.out, "<%u, %u, %u>:", |
|
|
|
|
syms, g.root + 1, ((1 << g.root) - left) << 1); |
|
|
|
|
for (int bits = g.root + 1; bits <= g.max; bits++) |
|
|
|
|
if (g.code[bits]) |
|
|
|
|
string_printf(&g.out, " %d[%d]", g.code[bits], bits); |
|
|
|
|
string_printf(&g.out, "\n"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// remove entries as we drop back down in the recursion
|
|
|
|
@ -359,23 +406,23 @@ local void examine(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// prune the tree if we can
|
|
|
|
|
if (beenhere(syms, len, left, mem, rem)) |
|
|
|
|
if (been_here(syms, left, len, mem, rem)) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
// we need to use at least this many bit patterns so that the code won't be
|
|
|
|
|
// incomplete at the next length (more bit patterns than symbols)
|
|
|
|
|
least = (left << 1) - syms; |
|
|
|
|
int least = (left << 1) - syms; |
|
|
|
|
if (least < 0) |
|
|
|
|
least = 0; |
|
|
|
|
|
|
|
|
|
// we can use at most this many bit patterns, lest there not be enough
|
|
|
|
|
// available for the remaining symbols at the maximum length (if there were
|
|
|
|
|
// no limit to the code length, this would become: most = left - 1)
|
|
|
|
|
most = (((code_t)left << (g.max - len)) - syms) / |
|
|
|
|
(((code_t)1 << (g.max - len)) - 1); |
|
|
|
|
int most = (((code_t)left << (g.max - len)) - syms) / |
|
|
|
|
(((code_t)1 << (g.max - len)) - 1); |
|
|
|
|
|
|
|
|
|
// occupy least table spaces, creating new sub-tables as needed
|
|
|
|
|
use = least; |
|
|
|
|
int use = least; |
|
|
|
|
while (rem < use) { |
|
|
|
|
use -= rem; |
|
|
|
|
rem = 1 << (len - g.root); |
|
|
|
@ -386,7 +433,7 @@ local void examine(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
// examine codes from here, updating table space as we go
|
|
|
|
|
for (use = least; use <= most; use++) { |
|
|
|
|
g.code[len] = use; |
|
|
|
|
examine(syms - use, len + 1, (left - use) << 1, |
|
|
|
|
examine(syms - use, (left - use) << 1, len + 1, |
|
|
|
|
mem + (rem ? 1 << (len - g.root) : 0), rem << 1); |
|
|
|
|
if (rem == 0) { |
|
|
|
|
rem = 1 << (len - g.root); |
|
|
|
@ -402,37 +449,35 @@ local void examine(int syms, int len, int left, int mem, int rem) { |
|
|
|
|
// Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
|
|
|
|
// intermediate code states (syms, left, len). For each completed code,
|
|
|
|
|
// calculate the amount of memory required by inflate to build the decoding
|
|
|
|
|
// tables. Find the maximum amount of memory required and show the code that
|
|
|
|
|
// requires that maximum. Uses the globals max, root, and num.
|
|
|
|
|
// tables. Find the maximum amount of memory required and show the codes that
|
|
|
|
|
// require that maximum.
|
|
|
|
|
local void enough(int syms) { |
|
|
|
|
int n; // number of remaing symbols for this node
|
|
|
|
|
int left; // number of unused bit patterns at this length
|
|
|
|
|
size_t index; // index of this case in *num
|
|
|
|
|
|
|
|
|
|
// clear code
|
|
|
|
|
for (n = 0; n <= g.max; n++) |
|
|
|
|
for (int n = 0; n <= g.max; n++) |
|
|
|
|
g.code[n] = 0; |
|
|
|
|
|
|
|
|
|
// look at all (root + 1) bit and longer codes
|
|
|
|
|
string_clear(&g.out); // empty saved results
|
|
|
|
|
g.large = 1 << g.root; // base table
|
|
|
|
|
if (g.root < g.max) // otherwise, there's only a base table
|
|
|
|
|
for (n = 3; n <= syms; n++) |
|
|
|
|
for (left = 2; left < n; left += 2) { |
|
|
|
|
for (int n = 3; n <= syms; n++) |
|
|
|
|
for (int left = 2; left < n; left += 2) { |
|
|
|
|
// look at all reachable (root + 1) bit nodes, and the
|
|
|
|
|
// resulting codes (complete at root + 2 or more)
|
|
|
|
|
index = map(n, left, g.root + 1); |
|
|
|
|
size_t index = map(n, left, g.root + 1); |
|
|
|
|
if (g.root + 1 < g.max && g.num[index]) // reachable node
|
|
|
|
|
examine(n, g.root + 1, left, 1 << g.root, 0); |
|
|
|
|
examine(n, left, g.root + 1, 1 << g.root, 0); |
|
|
|
|
|
|
|
|
|
// also look at root bit codes with completions at root + 1
|
|
|
|
|
// bits (not saved in num, since complete), just in case
|
|
|
|
|
if (g.num[index - 1] && n <= left << 1) |
|
|
|
|
examine((n - left) << 1, g.root + 1, (n - left) << 1, |
|
|
|
|
examine((n - left) << 1, (n - left) << 1, g.root + 1, |
|
|
|
|
1 << g.root, 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// done
|
|
|
|
|
printf("done: maximum of %d table entries\n", g.large); |
|
|
|
|
printf("maximum of %d table entries for root = %d\n", g.large, g.root); |
|
|
|
|
fputs(g.out.str, stdout); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Examine and show the total number of possible prefix codes for a given
|
|
|
|
@ -451,19 +496,14 @@ local void enough(int syms) { |
|
|
|
|
// For the deflate literal/length code, use "enough". For the deflate distance
|
|
|
|
|
// code, use "enough 30 6".
|
|
|
|
|
int main(int argc, char **argv) { |
|
|
|
|
int syms; // total number of symbols to code
|
|
|
|
|
int n; // number of symbols to code for this run
|
|
|
|
|
big_t got; // return value of count()
|
|
|
|
|
big_t sum; // accumulated number of codes over n
|
|
|
|
|
code_t word; // for counting bits in code_t
|
|
|
|
|
|
|
|
|
|
// set up globals for cleanup()
|
|
|
|
|
g.code = NULL; |
|
|
|
|
g.num = NULL; |
|
|
|
|
g.done = NULL; |
|
|
|
|
string_init(&g.out); |
|
|
|
|
|
|
|
|
|
// get arguments -- default to the deflate literal/length code
|
|
|
|
|
syms = 286; |
|
|
|
|
int syms = 286; |
|
|
|
|
g.root = 9; |
|
|
|
|
g.max = 15; |
|
|
|
|
if (argc > 1) { |
|
|
|
@ -485,11 +525,12 @@ int main(int argc, char **argv) { |
|
|
|
|
g.max = syms - 1; |
|
|
|
|
|
|
|
|
|
// determine the number of bits in a code_t
|
|
|
|
|
for (n = 0, word = 1; word; n++, word <<= 1) |
|
|
|
|
; |
|
|
|
|
int bits = 0; |
|
|
|
|
for (code_t word = 1; word; word <<= 1) |
|
|
|
|
bits++; |
|
|
|
|
|
|
|
|
|
// make sure that the calculation of most will not overflow
|
|
|
|
|
if (g.max > n || (code_t)(syms - 2) >= (((code_t)0 - 1) >> (g.max - 1))) { |
|
|
|
|
if (g.max > bits || (code_t)(syms - 2) >= ((code_t)-1 >> (g.max - 1))) { |
|
|
|
|
fputs("abort: code length too long for internal types\n", stderr); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
@ -503,10 +544,7 @@ int main(int argc, char **argv) { |
|
|
|
|
|
|
|
|
|
// allocate code vector
|
|
|
|
|
g.code = calloc(g.max + 1, sizeof(int)); |
|
|
|
|
if (g.code == NULL) { |
|
|
|
|
fputs("abort: unable to allocate enough memory\n", stderr); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
assert(g.code != NULL && "out of memory"); |
|
|
|
|
|
|
|
|
|
// determine size of saved results array, checking for overflows,
|
|
|
|
|
// allocate and clear the array (set all to zero with calloc())
|
|
|
|
@ -514,27 +552,22 @@ int main(int argc, char **argv) { |
|
|
|
|
g.num = NULL; // won't be saving any results
|
|
|
|
|
else { |
|
|
|
|
g.size = syms >> 1; |
|
|
|
|
if (g.size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) || |
|
|
|
|
(g.size *= n, g.size > ((size_t)0 - 1) / (n = g.max - 1)) || |
|
|
|
|
(g.size *= n, g.size > ((size_t)0 - 1) / sizeof(big_t)) || |
|
|
|
|
(g.num = calloc(g.size, sizeof(big_t))) == NULL) { |
|
|
|
|
fputs("abort: unable to allocate enough memory\n", stderr); |
|
|
|
|
cleanup(); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
int n = (syms - 1) >> 1; |
|
|
|
|
assert(g.size <= (size_t)-1 / n && "overflow"); |
|
|
|
|
g.size *= n; |
|
|
|
|
n = g.max - 1; |
|
|
|
|
assert(g.size <= (size_t)-1 / n && "overflow"); |
|
|
|
|
g.size *= n; |
|
|
|
|
g.num = calloc(g.size, sizeof(big_t)); |
|
|
|
|
assert(g.num != NULL && "out of memory"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// count possible codes for all numbers of symbols, add up counts
|
|
|
|
|
sum = 0; |
|
|
|
|
for (n = 2; n <= syms; n++) { |
|
|
|
|
got = count(n, 1, 2); |
|
|
|
|
big_t sum = 0; |
|
|
|
|
for (int n = 2; n <= syms; n++) { |
|
|
|
|
big_t got = count(n, 2, 1); |
|
|
|
|
sum += got; |
|
|
|
|
if (got == (big_t)0 - 1 || sum < got) { // overflow
|
|
|
|
|
fputs("abort: can't count that high!\n", stderr); |
|
|
|
|
cleanup(); |
|
|
|
|
return 1; |
|
|
|
|
} |
|
|
|
|
printf("%"PRIbig" %d-codes\n", got, n); |
|
|
|
|
assert(got != (big_t)-1 && sum >= got && "overflow"); |
|
|
|
|
} |
|
|
|
|
printf("%"PRIbig" total codes for 2 to %d symbols", sum, syms); |
|
|
|
|
if (g.max < syms - 1) |
|
|
|
@ -542,14 +575,12 @@ int main(int argc, char **argv) { |
|
|
|
|
else |
|
|
|
|
puts(" (no length limit)"); |
|
|
|
|
|
|
|
|
|
// allocate and clear done array for beenhere()
|
|
|
|
|
// allocate and clear done array for been_here()
|
|
|
|
|
if (syms == 2) |
|
|
|
|
g.done = NULL; |
|
|
|
|
else if (g.size > ((size_t)0 - 1) / sizeof(struct tab) || |
|
|
|
|
(g.done = calloc(g.size, sizeof(struct tab))) == NULL) { |
|
|
|
|
fputs("abort: unable to allocate enough memory\n", stderr); |
|
|
|
|
cleanup(); |
|
|
|
|
return 1; |
|
|
|
|
else { |
|
|
|
|
g.done = calloc(g.size, sizeof(struct tab)); |
|
|
|
|
assert(g.done != NULL && "out of memory"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// find and show maximum inflate table usage
|
|
|
|
@ -558,7 +589,7 @@ int main(int argc, char **argv) { |
|
|
|
|
if ((code_t)syms < ((code_t)1 << (g.root + 1))) |
|
|
|
|
enough(syms); |
|
|
|
|
else |
|
|
|
|
puts("cannot handle minimum code lengths > root"); |
|
|
|
|
fputs("cannot handle minimum code lengths > root", stderr); |
|
|
|
|
|
|
|
|
|
// done
|
|
|
|
|
cleanup(); |
|
|
|
|