A massively spiffy yet delicately unobtrusive compression library. (grpc依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

455 lines
15 KiB

14 years ago
/* crc32.c -- compute the CRC-32 of a data stream
* Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler
14 years ago
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
* tables for updating the shift register in one step with three exclusive-ors
14 years ago
* instead of four steps with four exclusive-ors. This results in about a
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
14 years ago
*/
14 years ago
/* @(#) $Id$ */
14 years ago
14 years ago
/*
14 years ago
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
protection on the static variables used to control the first-use generation
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
first call get_crc_table() to initialize the tables before allowing more than
one thread to use crc32().
14 years ago
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. A main()
routine is also produced, so that this one source file can be compiled to an
executable.
14 years ago
*/
14 years ago
#ifdef MAKECRCH
# include <stdio.h>
# ifndef DYNAMIC_CRC_TABLE
# define DYNAMIC_CRC_TABLE
# endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */
14 years ago
#include "zutil.h" /* for STDC and FAR definitions */
14 years ago
14 years ago
/* Definitions for doing the crc four data bytes at a time. */
#if !defined(NOBYFOUR) && defined(Z_U4)
# define BYFOUR
#endif
14 years ago
#ifdef BYFOUR
local unsigned long crc32_little OF((unsigned long,
const unsigned char FAR *, z_size_t));
14 years ago
local unsigned long crc32_big OF((unsigned long,
const unsigned char FAR *, z_size_t));
14 years ago
# define TBLS 8
#else
# define TBLS 1
#endif /* BYFOUR */
14 years ago
/* Local functions for crc concatenation */
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
local z_crc_t gf2_matrix_times OF((const z_crc_t *mat, z_crc_t vec));
14 years ago
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
14 years ago
/* ========================================================================= */
local z_crc_t gf2_matrix_times(mat, vec)
const z_crc_t *mat;
z_crc_t vec;
{
z_crc_t sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
14 years ago
14 years ago
#ifdef DYNAMIC_CRC_TABLE
14 years ago
14 years ago
local volatile int crc_table_empty = 1;
local z_crc_t FAR crc_table[TBLS][256];
local z_crc_t FAR crc_comb[GF2_DIM][GF2_DIM];
14 years ago
local void make_crc_table OF((void));
local void gf2_matrix_square OF((z_crc_t *square, const z_crc_t *mat));
14 years ago
#ifdef MAKECRCH
local void write_table OF((FILE *, const z_crc_t FAR *, int));
14 years ago
#endif /* MAKECRCH */
/* ========================================================================= */
local void gf2_matrix_square(square, mat)
z_crc_t *square;
const z_crc_t *mat;
{
int n;
for (n = 0; n < GF2_DIM; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
14 years ago
/*
14 years ago
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
14 years ago
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
14 years ago
14 years ago
Polynomials over GF(2) are represented in binary, one bit per coefficient,
with the lowest powers in the most significant bit. Then adding polynomials
is just exclusive-or, and multiplying a polynomial by x is a right shift by
one. If we call the above polynomial p, and represent a byte as the
polynomial q, also with the lowest power in the most significant bit (so the
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
where a mod b means the remainder after dividing a by b.
This calculation is done using the shift-register method of multiplying and
taking the remainder. The register is initialized to zero, and for each
incoming bit, x^32 is added mod p to the register if the bit is a one (where
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
x (which is shifting right by one and adding x^32 mod p if the bit shifted
out is a one). We start with the highest power (least significant bit) of
q and repeat for all eight bits of q.
14 years ago
The first table is simply the CRC of all possible eight bit values. This is
all the information needed to generate CRCs on data a byte at a time for all
combinations of CRC register values and incoming bytes. The remaining tables
allow for word-at-a-time CRC calculation for both big-endian and little-
endian machines, where a word is four bytes.
14 years ago
*/
14 years ago
local void make_crc_table()
14 years ago
{
z_crc_t c;
14 years ago
int n, k;
z_crc_t poly; /* polynomial exclusive-or pattern */
14 years ago
/* terms of polynomial defining this crc (except x^32): */
14 years ago
static volatile int first = 1; /* flag to limit concurrent making */
14 years ago
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
14 years ago
/* See if another task is already doing this (not thread-safe, but better
than nothing -- significantly reduces duration of vulnerability in
case the advice about DYNAMIC_CRC_TABLE is ignored) */
if (first) {
first = 0;
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
14 years ago
poly = 0;
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
poly |= (z_crc_t)1 << (31 - p[n]);
14 years ago
/* generate a crc for every 8-bit value */
for (n = 0; n < 256; n++) {
c = (z_crc_t)n;
14 years ago
for (k = 0; k < 8; k++)
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
crc_table[0][n] = c;
}
14 years ago
#ifdef BYFOUR
14 years ago
/* generate crc for each value followed by one, two, and three zeros,
and then the byte reversal of those as well as the first table */
for (n = 0; n < 256; n++) {
c = crc_table[0][n];
crc_table[4][n] = ZSWAP32(c);
14 years ago
for (k = 1; k < 4; k++) {
c = crc_table[0][c & 0xff] ^ (c >> 8);
crc_table[k][n] = c;
crc_table[k + 4][n] = ZSWAP32(c);
14 years ago
}
}
14 years ago
#endif /* BYFOUR */
/* generate zero operators table for crc32_combine() */
/* generate the operator to apply a single zero bit to a CRC -- the
first row adds the polynomial if the low bit is a 1, and the
remaining rows shift the CRC right one bit */
k = GF2_DIM - 3;
crc_comb[k][0] = 0xedb88320UL; /* CRC-32 polynomial */
z_crc_t row = 1;
for (n = 1; n < GF2_DIM; n++) {
crc_comb[k][n] = row;
row <<= 1;
}
/* generate operators that apply 2, 4, and 8 zeros to a CRC, putting
the last one, the operator for one zero byte, at the 0 position */
gf2_matrix_square(crc_comb[k + 1], crc_comb[k]);
gf2_matrix_square(crc_comb[k + 2], crc_comb[k + 1]);
gf2_matrix_square(crc_comb[0], crc_comb[k + 2]);
/* generate operators for applying 2^n zero bytes to a CRC, filling out
the remainder of the table -- the operators repeat after GF2_DIM
values of n, so the table only needs GF2_DIM entries, regardless of
the size of the length being processed */
for (n = 1; n < k; n++)
gf2_matrix_square(crc_comb[n], crc_comb[n - 1]);
/* mark tables as complete, in case someone else is waiting */
14 years ago
crc_table_empty = 0;
}
else { /* not first */
/* wait for the other guy to finish (not efficient, but rare) */
while (crc_table_empty)
;
}
14 years ago
#ifdef MAKECRCH
{
FILE *out;
out = fopen("crc32.h", "w");
if (out == NULL) return;
/* write out CRC table to crc32.h */
14 years ago
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
fprintf(out, "local const z_crc_t FAR ");
fprintf(out, "crc_table[%d][256] =\n{\n {\n", TBLS);
write_table(out, crc_table[0], 256);
14 years ago
# ifdef BYFOUR
fprintf(out, "#ifdef BYFOUR\n");
for (k = 1; k < 8; k++) {
fprintf(out, " },\n {\n");
write_table(out, crc_table[k], 256);
14 years ago
}
fprintf(out, "#endif\n");
# endif /* BYFOUR */
fprintf(out, " }\n};\n");
/* write out zero operator table to crc32.h */
fprintf(out, "\nlocal const z_crc_t FAR ");
fprintf(out, "crc_comb[%d][%d] =\n{\n {\n", GF2_DIM, GF2_DIM);
write_table(out, crc_comb[0], GF2_DIM);
for (k = 1; k < GF2_DIM; k++) {
fprintf(out, " },\n {\n");
write_table(out, crc_comb[k], GF2_DIM);
}
fprintf(out, " }\n};\n");
14 years ago
fclose(out);
}
#endif /* MAKECRCH */
14 years ago
}
14 years ago
#ifdef MAKECRCH
local void write_table(out, table, k)
14 years ago
FILE *out;
const z_crc_t FAR *table;
int k;
14 years ago
{
int n;
for (n = 0; n < k; n++)
14 years ago
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
(unsigned long)(table[n]),
n == k - 1 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
}
int main()
{
make_crc_table();
return 0;
14 years ago
}
#endif /* MAKECRCH */
#else /* !DYNAMIC_CRC_TABLE */
14 years ago
/* ========================================================================
* Tables of CRC-32s of all single-byte values, made by make_crc_table(),
* and tables of zero operator matrices for crc32_combine().
14 years ago
*/
14 years ago
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */
14 years ago
14 years ago
/* =========================================================================
* This function can be used by asm versions of crc32()
*/
const z_crc_t FAR * ZEXPORT get_crc_table()
14 years ago
{
#ifdef DYNAMIC_CRC_TABLE
14 years ago
if (crc_table_empty)
make_crc_table();
14 years ago
#endif /* DYNAMIC_CRC_TABLE */
return (const z_crc_t FAR *)crc_table;
14 years ago
}
/* ========================================================================= */
14 years ago
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
14 years ago
/* ========================================================================= */
unsigned long ZEXPORT crc32_z(crc, buf, len)
14 years ago
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
14 years ago
{
14 years ago
if (buf == Z_NULL) return 0UL;
14 years ago
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
14 years ago
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
#ifdef BYFOUR
if (sizeof(void *) == sizeof(z_size_t)) {
z_crc_t endian;
14 years ago
endian = 1;
if (*((unsigned char *)(&endian)))
return crc32_little(crc, buf, len);
else
return crc32_big(crc, buf, len);
}
14 years ago
#endif /* BYFOUR */
14 years ago
crc = crc ^ 0xffffffffUL;
while (len >= 8) {
DO8;
len -= 8;
}
if (len) do {
DO1;
} while (--len);
return crc ^ 0xffffffffUL;
}
/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
uInt len;
{
return crc32_z(crc, buf, len);
}
14 years ago
#ifdef BYFOUR
/*
This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
integer pointer type. This violates the strict aliasing rule, where a
compiler can assume, for optimization purposes, that two pointers to
fundamentally different types won't ever point to the same memory. This can
manifest as a problem only if one of the pointers is written to. This code
only reads from those pointers. So long as this code remains isolated in
this compilation unit, there won't be a problem. For this reason, this code
should not be copied and pasted into a compilation unit in which other code
writes to the buffer that is passed to these routines.
*/
14 years ago
/* ========================================================================= */
#define DOLIT4 c ^= *buf4++; \
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
/* ========================================================================= */
local unsigned long crc32_little(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
14 years ago
{
register z_crc_t c;
register const z_crc_t FAR *buf4;
14 years ago
c = (z_crc_t)crc;
14 years ago
c = ~c;
while (len && ((z_size_t)buf & 3)) {
14 years ago
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
len--;
}
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
14 years ago
while (len >= 32) {
DOLIT32;
len -= 32;
}
while (len >= 4) {
DOLIT4;
len -= 4;
14 years ago
}
14 years ago
buf = (const unsigned char FAR *)buf4;
14 years ago
if (len) do {
14 years ago
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
14 years ago
} while (--len);
14 years ago
c = ~c;
return (unsigned long)c;
14 years ago
}
14 years ago
/* ========================================================================= */
#define DOBIG4 c ^= *buf4++; \
14 years ago
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
/* ========================================================================= */
local unsigned long crc32_big(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
z_size_t len;
14 years ago
{
register z_crc_t c;
register const z_crc_t FAR *buf4;
14 years ago
c = ZSWAP32((z_crc_t)crc);
14 years ago
c = ~c;
while (len && ((z_size_t)buf & 3)) {
14 years ago
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
len--;
}
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
14 years ago
while (len >= 32) {
DOBIG32;
len -= 32;
}
while (len >= 4) {
DOBIG4;
len -= 4;
}
buf = (const unsigned char FAR *)buf4;
if (len) do {
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
} while (--len);
c = ~c;
return (unsigned long)(ZSWAP32(c));
14 years ago
}
#endif /* BYFOUR */
14 years ago
/* ========================================================================= */
14 years ago
local uLong crc32_combine_(crc1, crc2, len2)
14 years ago
uLong crc1;
uLong crc2;
14 years ago
z_off64_t len2;
14 years ago
{
int n;
#ifdef DYNAMIC_CRC_TABLE
if (crc_table_empty)
make_crc_table();
#endif /* DYNAMIC_CRC_TABLE */
if (len2 > 0)
/* operator for 2^n zeros repeats every GF2_DIM n values */
for (n = 0; len2; n = (n + 1) % GF2_DIM, len2 >>= 1)
if (len2 & 1)
crc1 = gf2_matrix_times(crc_comb[n], crc1);
return crc1 ^ crc2;
14 years ago
}
14 years ago
/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
uLong crc1;
uLong crc2;
z_off_t len2;
{
return crc32_combine_(crc1, crc2, len2);
}
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
uLong crc1;
uLong crc2;
14 years ago
z_off64_t len2;
14 years ago
{
return crc32_combine_(crc1, crc2, len2);
}