mirror of https://github.com/yasm/yasm.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
892 lines
26 KiB
892 lines
26 KiB
#define YASM_LIB_INTERNAL |
|
#include "util.h" |
|
/*@unused@*/ RCSID("$Id$"); |
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <limits.h> |
|
#include <math.h> |
|
#include "coretype.h" |
|
#include "inttree.h" |
|
|
|
#define VERIFY(condition) \ |
|
if (!(condition)) { \ |
|
fprintf(stderr, "Assumption \"%s\"\nFailed in file %s: at line:%i\n", \ |
|
#condition,__FILE__,__LINE__); \ |
|
abort();} |
|
|
|
/*#define DEBUG_ASSERT 1*/ |
|
|
|
#ifdef DEBUG_ASSERT |
|
static void Assert(int assertion, const char *error) |
|
{ |
|
if (!assertion) { |
|
fprintf(stderr, "Assertion Failed: %s\n", error); |
|
abort(); |
|
} |
|
} |
|
#endif |
|
|
|
/* If the symbol CHECK_INTERVAL_TREE_ASSUMPTIONS is defined then the |
|
* code does a lot of extra checking to make sure certain assumptions |
|
* are satisfied. This only needs to be done if you suspect bugs are |
|
* present or if you make significant changes and want to make sure |
|
* your changes didn't mess anything up. |
|
*/ |
|
/*#define CHECK_INTERVAL_TREE_ASSUMPTIONS 1*/ |
|
|
|
static IntervalTreeNode *ITN_create(long low, long high, void *data); |
|
|
|
static void LeftRotate(IntervalTree *, IntervalTreeNode *); |
|
static void RightRotate(IntervalTree *, IntervalTreeNode *); |
|
static void TreeInsertHelp(IntervalTree *, IntervalTreeNode *); |
|
static void TreePrintHelper(const IntervalTree *, IntervalTreeNode *); |
|
static void FixUpMaxHigh(IntervalTree *, IntervalTreeNode *); |
|
static void DeleteFixUp(IntervalTree *, IntervalTreeNode *); |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
static void CheckMaxHighFields(const IntervalTree *, IntervalTreeNode *); |
|
static int CheckMaxHighFieldsHelper(const IntervalTree *, IntervalTreeNode *y, |
|
const int currentHigh, int match); |
|
static void IT_CheckAssumptions(const IntervalTree *); |
|
#endif |
|
|
|
/* define a function to find the maximum of two objects. */ |
|
#define ITMax(a, b) ( (a > b) ? a : b ) |
|
|
|
IntervalTreeNode * |
|
ITN_create(long low, long high, void *data) |
|
{ |
|
IntervalTreeNode *itn = yasm_xmalloc(sizeof(IntervalTreeNode)); |
|
itn->data = data; |
|
if (low < high) { |
|
itn->low = low; |
|
itn->high = high; |
|
} else { |
|
itn->low = high; |
|
itn->high = low; |
|
} |
|
itn->maxHigh = high; |
|
return itn; |
|
} |
|
|
|
IntervalTree * |
|
IT_create(void) |
|
{ |
|
IntervalTree *it = yasm_xmalloc(sizeof(IntervalTree)); |
|
|
|
it->nil = ITN_create(LONG_MIN, LONG_MIN, NULL); |
|
it->nil->left = it->nil; |
|
it->nil->right = it->nil; |
|
it->nil->parent = it->nil; |
|
it->nil->red = 0; |
|
|
|
it->root = ITN_create(LONG_MAX, LONG_MAX, NULL); |
|
it->root->left = it->nil; |
|
it->root->right = it->nil; |
|
it->root->parent = it->nil; |
|
it->root->red = 0; |
|
|
|
/* the following are used for the Enumerate function */ |
|
it->recursionNodeStackSize = 128; |
|
it->recursionNodeStack = (it_recursion_node *) |
|
yasm_xmalloc(it->recursionNodeStackSize*sizeof(it_recursion_node)); |
|
it->recursionNodeStackTop = 1; |
|
it->recursionNodeStack[0].start_node = NULL; |
|
|
|
return it; |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: LeftRotate */ |
|
/**/ |
|
/* INPUTS: the node to rotate on */ |
|
/**/ |
|
/* OUTPUT: None */ |
|
/**/ |
|
/* Modifies Input: this, x */ |
|
/**/ |
|
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */ |
|
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */ |
|
/* makes the parent of x be to the left of x, x the parent of */ |
|
/* its parent before the rotation and fixes other pointers */ |
|
/* accordingly. Also updates the maxHigh fields of x and y */ |
|
/* after rotation. */ |
|
/***********************************************************************/ |
|
|
|
static void |
|
LeftRotate(IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
IntervalTreeNode *y; |
|
|
|
/* I originally wrote this function to use the sentinel for |
|
* nil to avoid checking for nil. However this introduces a |
|
* very subtle bug because sometimes this function modifies |
|
* the parent pointer of nil. This can be a problem if a |
|
* function which calls LeftRotate also uses the nil sentinel |
|
* and expects the nil sentinel's parent pointer to be unchanged |
|
* after calling this function. For example, when DeleteFixUP |
|
* calls LeftRotate it expects the parent pointer of nil to be |
|
* unchanged. |
|
*/ |
|
|
|
y=x->right; |
|
x->right=y->left; |
|
|
|
if (y->left != it->nil) |
|
y->left->parent=x; /* used to use sentinel here */ |
|
/* and do an unconditional assignment instead of testing for nil */ |
|
|
|
y->parent=x->parent; |
|
|
|
/* Instead of checking if x->parent is the root as in the book, we |
|
* count on the root sentinel to implicitly take care of this case |
|
*/ |
|
if (x == x->parent->left) |
|
x->parent->left=y; |
|
else |
|
x->parent->right=y; |
|
y->left=x; |
|
x->parent=y; |
|
|
|
x->maxHigh=ITMax(x->left->maxHigh,ITMax(x->right->maxHigh,x->high)); |
|
y->maxHigh=ITMax(x->maxHigh,ITMax(y->right->maxHigh,y->high)); |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not red in ITLeftRotate"); |
|
Assert((it->nil->maxHigh=LONG_MIN), |
|
"nil->maxHigh != LONG_MIN in ITLeftRotate"); |
|
#endif |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: RightRotate */ |
|
/**/ |
|
/* INPUTS: node to rotate on */ |
|
/**/ |
|
/* OUTPUT: None */ |
|
/**/ |
|
/* Modifies Input?: this, y */ |
|
/**/ |
|
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */ |
|
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */ |
|
/* makes the parent of x be to the left of x, x the parent of */ |
|
/* its parent before the rotation and fixes other pointers */ |
|
/* accordingly. Also updates the maxHigh fields of x and y */ |
|
/* after rotation. */ |
|
/***********************************************************************/ |
|
|
|
|
|
static void |
|
RightRotate(IntervalTree *it, IntervalTreeNode *y) |
|
{ |
|
IntervalTreeNode *x; |
|
|
|
/* I originally wrote this function to use the sentinel for |
|
* nil to avoid checking for nil. However this introduces a |
|
* very subtle bug because sometimes this function modifies |
|
* the parent pointer of nil. This can be a problem if a |
|
* function which calls LeftRotate also uses the nil sentinel |
|
* and expects the nil sentinel's parent pointer to be unchanged |
|
* after calling this function. For example, when DeleteFixUP |
|
* calls LeftRotate it expects the parent pointer of nil to be |
|
* unchanged. |
|
*/ |
|
|
|
x=y->left; |
|
y->left=x->right; |
|
|
|
if (it->nil != x->right) |
|
x->right->parent=y; /*used to use sentinel here */ |
|
/* and do an unconditional assignment instead of testing for nil */ |
|
|
|
/* Instead of checking if x->parent is the root as in the book, we |
|
* count on the root sentinel to implicitly take care of this case |
|
*/ |
|
x->parent=y->parent; |
|
if (y == y->parent->left) |
|
y->parent->left=x; |
|
else |
|
y->parent->right=x; |
|
x->right=y; |
|
y->parent=x; |
|
|
|
y->maxHigh=ITMax(y->left->maxHigh,ITMax(y->right->maxHigh,y->high)); |
|
x->maxHigh=ITMax(x->left->maxHigh,ITMax(y->maxHigh,x->high)); |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not red in ITRightRotate"); |
|
Assert((it->nil->maxHigh=LONG_MIN), |
|
"nil->maxHigh != LONG_MIN in ITRightRotate"); |
|
#endif |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: TreeInsertHelp */ |
|
/**/ |
|
/* INPUTS: z is the node to insert */ |
|
/**/ |
|
/* OUTPUT: none */ |
|
/**/ |
|
/* Modifies Input: this, z */ |
|
/**/ |
|
/* EFFECTS: Inserts z into the tree as if it were a regular binary tree */ |
|
/* using the algorithm described in _Introduction_To_Algorithms_ */ |
|
/* by Cormen et al. This funciton is only intended to be called */ |
|
/* by the InsertTree function and not by the user */ |
|
/***********************************************************************/ |
|
|
|
static void |
|
TreeInsertHelp(IntervalTree *it, IntervalTreeNode *z) |
|
{ |
|
/* This function should only be called by InsertITTree (see above) */ |
|
IntervalTreeNode* x; |
|
IntervalTreeNode* y; |
|
|
|
z->left=z->right=it->nil; |
|
y=it->root; |
|
x=it->root->left; |
|
while( x != it->nil) { |
|
y=x; |
|
if (x->low > z->low) |
|
x=x->left; |
|
else /* x->low <= z->low */ |
|
x=x->right; |
|
} |
|
z->parent=y; |
|
if ((y == it->root) || (y->low > z->low)) |
|
y->left=z; |
|
else |
|
y->right=z; |
|
|
|
#if defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not red in ITTreeInsertHelp"); |
|
Assert((it->nil->maxHigh=INT_MIN), |
|
"nil->maxHigh != INT_MIN in ITTreeInsertHelp"); |
|
#endif |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: FixUpMaxHigh */ |
|
/**/ |
|
/* INPUTS: x is the node to start from*/ |
|
/**/ |
|
/* OUTPUT: none */ |
|
/**/ |
|
/* Modifies Input: this */ |
|
/**/ |
|
/* EFFECTS: Travels up to the root fixing the maxHigh fields after */ |
|
/* an insertion or deletion */ |
|
/***********************************************************************/ |
|
|
|
static void |
|
FixUpMaxHigh(IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
while(x != it->root) { |
|
x->maxHigh=ITMax(x->high,ITMax(x->left->maxHigh,x->right->maxHigh)); |
|
x=x->parent; |
|
} |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#endif |
|
} |
|
|
|
/* Before calling InsertNode the node x should have its key set */ |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: InsertNode */ |
|
/**/ |
|
/* INPUTS: newInterval is the interval to insert*/ |
|
/**/ |
|
/* OUTPUT: This function returns a pointer to the newly inserted node */ |
|
/* which is guarunteed to be valid until this node is deleted. */ |
|
/* What this means is if another data structure stores this */ |
|
/* pointer then the tree does not need to be searched when this */ |
|
/* is to be deleted. */ |
|
/**/ |
|
/* Modifies Input: tree */ |
|
/**/ |
|
/* EFFECTS: Creates a node node which contains the appropriate key and */ |
|
/* info pointers and inserts it into the tree. */ |
|
/***********************************************************************/ |
|
|
|
IntervalTreeNode * |
|
IT_insert(IntervalTree *it, long low, long high, void *data) |
|
{ |
|
IntervalTreeNode *x, *y, *newNode; |
|
|
|
x = ITN_create(low, high, data); |
|
TreeInsertHelp(it, x); |
|
FixUpMaxHigh(it, x->parent); |
|
newNode = x; |
|
x->red=1; |
|
while(x->parent->red) { /* use sentinel instead of checking for root */ |
|
if (x->parent == x->parent->parent->left) { |
|
y=x->parent->parent->right; |
|
if (y->red) { |
|
x->parent->red=0; |
|
y->red=0; |
|
x->parent->parent->red=1; |
|
x=x->parent->parent; |
|
} else { |
|
if (x == x->parent->right) { |
|
x=x->parent; |
|
LeftRotate(it, x); |
|
} |
|
x->parent->red=0; |
|
x->parent->parent->red=1; |
|
RightRotate(it, x->parent->parent); |
|
} |
|
} else { /* case for x->parent == x->parent->parent->right */ |
|
/* this part is just like the section above with */ |
|
/* left and right interchanged */ |
|
y=x->parent->parent->left; |
|
if (y->red) { |
|
x->parent->red=0; |
|
y->red=0; |
|
x->parent->parent->red=1; |
|
x=x->parent->parent; |
|
} else { |
|
if (x == x->parent->left) { |
|
x=x->parent; |
|
RightRotate(it, x); |
|
} |
|
x->parent->red=0; |
|
x->parent->parent->red=1; |
|
LeftRotate(it, x->parent->parent); |
|
} |
|
} |
|
} |
|
it->root->left->red=0; |
|
|
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not red in ITTreeInsert"); |
|
Assert(!it->root->red,"root not red in ITTreeInsert"); |
|
Assert((it->nil->maxHigh=LONG_MIN), |
|
"nil->maxHigh != LONG_MIN in ITTreeInsert"); |
|
#endif |
|
return newNode; |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: GetSuccessorOf */ |
|
/**/ |
|
/* INPUTS: x is the node we want the succesor of */ |
|
/**/ |
|
/* OUTPUT: This function returns the successor of x or NULL if no */ |
|
/* successor exists. */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */ |
|
/***********************************************************************/ |
|
|
|
IntervalTreeNode * |
|
IT_get_successor(const IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
IntervalTreeNode *y; |
|
|
|
if (it->nil != (y = x->right)) { /* assignment to y is intentional */ |
|
while(y->left != it->nil) /* returns the minium of the right subtree of x */ |
|
y=y->left; |
|
return y; |
|
} else { |
|
y=x->parent; |
|
while(x == y->right) { /* sentinel used instead of checking for nil */ |
|
x=y; |
|
y=y->parent; |
|
} |
|
if (y == it->root) |
|
return(it->nil); |
|
return y; |
|
} |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: GetPredecessorOf */ |
|
/**/ |
|
/* INPUTS: x is the node to get predecessor of */ |
|
/**/ |
|
/* OUTPUT: This function returns the predecessor of x or NULL if no */ |
|
/* predecessor exists. */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */ |
|
/***********************************************************************/ |
|
|
|
IntervalTreeNode * |
|
IT_get_predecessor(const IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
IntervalTreeNode *y; |
|
|
|
if (it->nil != (y = x->left)) { /* assignment to y is intentional */ |
|
while(y->right != it->nil) /* returns the maximum of the left subtree of x */ |
|
y=y->right; |
|
return y; |
|
} else { |
|
y=x->parent; |
|
while(x == y->left) { |
|
if (y == it->root) |
|
return(it->nil); |
|
x=y; |
|
y=y->parent; |
|
} |
|
return y; |
|
} |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: Print */ |
|
/**/ |
|
/* INPUTS: none */ |
|
/**/ |
|
/* OUTPUT: none */ |
|
/**/ |
|
/* EFFECTS: This function recursively prints the nodes of the tree */ |
|
/* inorder. */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/* Note: This function should only be called from ITTreePrint */ |
|
/***********************************************************************/ |
|
|
|
static void |
|
ITN_print(const IntervalTreeNode *itn, IntervalTreeNode *nil, |
|
IntervalTreeNode *root) |
|
{ |
|
printf(", l=%li, h=%li, mH=%li", itn->low, itn->high, itn->maxHigh); |
|
printf(" l->low="); |
|
if (itn->left == nil) |
|
printf("NULL"); |
|
else |
|
printf("%li", itn->left->low); |
|
printf(" r->low="); |
|
if (itn->right == nil) |
|
printf("NULL"); |
|
else |
|
printf("%li", itn->right->low); |
|
printf(" p->low="); |
|
if (itn->parent == root) |
|
printf("NULL"); |
|
else |
|
printf("%li", itn->parent->low); |
|
printf(" red=%i\n", itn->red); |
|
} |
|
|
|
static void |
|
TreePrintHelper(const IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
if (x != it->nil) { |
|
TreePrintHelper(it, x->left); |
|
ITN_print(x, it->nil, it->root); |
|
TreePrintHelper(it, x->right); |
|
} |
|
} |
|
|
|
void |
|
IT_destroy(IntervalTree *it) |
|
{ |
|
IntervalTreeNode *x = it->root->left; |
|
SLIST_HEAD(, nodeent) stuffToFree = SLIST_HEAD_INITIALIZER(stuffToFree); |
|
struct nodeent { |
|
SLIST_ENTRY(nodeent) link; |
|
struct IntervalTreeNode *node; |
|
} *np; |
|
|
|
if (x != it->nil) { |
|
if (x->left != it->nil) { |
|
np = yasm_xmalloc(sizeof(struct nodeent)); |
|
np->node = x->left; |
|
SLIST_INSERT_HEAD(&stuffToFree, np, link); |
|
} |
|
if (x->right != it->nil) { |
|
np = yasm_xmalloc(sizeof(struct nodeent)); |
|
np->node = x->right; |
|
SLIST_INSERT_HEAD(&stuffToFree, np, link); |
|
} |
|
yasm_xfree(x); |
|
while (!SLIST_EMPTY(&stuffToFree)) { |
|
np = SLIST_FIRST(&stuffToFree); |
|
x = np->node; |
|
SLIST_REMOVE_HEAD(&stuffToFree, link); |
|
yasm_xfree(np); |
|
|
|
if (x->left != it->nil) { |
|
np = yasm_xmalloc(sizeof(struct nodeent)); |
|
np->node = x->left; |
|
SLIST_INSERT_HEAD(&stuffToFree, np, link); |
|
} |
|
if (x->right != it->nil) { |
|
np = yasm_xmalloc(sizeof(struct nodeent)); |
|
np->node = x->right; |
|
SLIST_INSERT_HEAD(&stuffToFree, np, link); |
|
} |
|
yasm_xfree(x); |
|
} |
|
} |
|
|
|
yasm_xfree(it->nil); |
|
yasm_xfree(it->root); |
|
yasm_xfree(it->recursionNodeStack); |
|
yasm_xfree(it); |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: Print */ |
|
/**/ |
|
/* INPUTS: none */ |
|
/**/ |
|
/* OUTPUT: none */ |
|
/**/ |
|
/* EFFECT: This function recursively prints the nodes of the tree */ |
|
/* inorder. */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/***********************************************************************/ |
|
|
|
void |
|
IT_print(const IntervalTree *it) |
|
{ |
|
TreePrintHelper(it, it->root->left); |
|
} |
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: DeleteFixUp */ |
|
/**/ |
|
/* INPUTS: x is the child of the spliced */ |
|
/* out node in DeleteNode. */ |
|
/**/ |
|
/* OUTPUT: none */ |
|
/**/ |
|
/* EFFECT: Performs rotations and changes colors to restore red-black */ |
|
/* properties after a node is deleted */ |
|
/**/ |
|
/* Modifies Input: this, x */ |
|
/**/ |
|
/* The algorithm from this function is from _Introduction_To_Algorithms_ */ |
|
/***********************************************************************/ |
|
|
|
static void |
|
DeleteFixUp(IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
IntervalTreeNode *w; |
|
IntervalTreeNode *rootLeft = it->root->left; |
|
|
|
while ((!x->red) && (rootLeft != x)) { |
|
if (x == x->parent->left) { |
|
w=x->parent->right; |
|
if (w->red) { |
|
w->red=0; |
|
x->parent->red=1; |
|
LeftRotate(it, x->parent); |
|
w=x->parent->right; |
|
} |
|
if ( (!w->right->red) && (!w->left->red) ) { |
|
w->red=1; |
|
x=x->parent; |
|
} else { |
|
if (!w->right->red) { |
|
w->left->red=0; |
|
w->red=1; |
|
RightRotate(it, w); |
|
w=x->parent->right; |
|
} |
|
w->red=x->parent->red; |
|
x->parent->red=0; |
|
w->right->red=0; |
|
LeftRotate(it, x->parent); |
|
x=rootLeft; /* this is to exit while loop */ |
|
} |
|
} else { /* the code below is has left and right switched from above */ |
|
w=x->parent->left; |
|
if (w->red) { |
|
w->red=0; |
|
x->parent->red=1; |
|
RightRotate(it, x->parent); |
|
w=x->parent->left; |
|
} |
|
if ((!w->right->red) && (!w->left->red)) { |
|
w->red=1; |
|
x=x->parent; |
|
} else { |
|
if (!w->left->red) { |
|
w->right->red=0; |
|
w->red=1; |
|
LeftRotate(it, w); |
|
w=x->parent->left; |
|
} |
|
w->red=x->parent->red; |
|
x->parent->red=0; |
|
w->left->red=0; |
|
RightRotate(it, x->parent); |
|
x=rootLeft; /* this is to exit while loop */ |
|
} |
|
} |
|
} |
|
x->red=0; |
|
|
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not black in ITDeleteFixUp"); |
|
Assert((it->nil->maxHigh=LONG_MIN), |
|
"nil->maxHigh != LONG_MIN in ITDeleteFixUp"); |
|
#endif |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: DeleteNode */ |
|
/**/ |
|
/* INPUTS: tree is the tree to delete node z from */ |
|
/**/ |
|
/* OUTPUT: returns the Interval stored at deleted node */ |
|
/**/ |
|
/* EFFECT: Deletes z from tree and but don't call destructor */ |
|
/* Then calls FixUpMaxHigh to fix maxHigh fields then calls */ |
|
/* ITDeleteFixUp to restore red-black properties */ |
|
/**/ |
|
/* Modifies Input: z */ |
|
/**/ |
|
/* The algorithm from this function is from _Introduction_To_Algorithms_ */ |
|
/***********************************************************************/ |
|
|
|
void * |
|
IT_delete_node(IntervalTree *it, IntervalTreeNode *z, long *low, long *high) |
|
{ |
|
IntervalTreeNode *x, *y; |
|
void *returnValue = z->data; |
|
if (low) |
|
*low = z->low; |
|
if (high) |
|
*high = z->high; |
|
|
|
y= ((z->left == it->nil) || (z->right == it->nil)) ? |
|
z : IT_get_successor(it, z); |
|
x= (y->left == it->nil) ? y->right : y->left; |
|
if (it->root == (x->parent = y->parent)) |
|
/* assignment of y->p to x->p is intentional */ |
|
it->root->left=x; |
|
else { |
|
if (y == y->parent->left) |
|
y->parent->left=x; |
|
else |
|
y->parent->right=x; |
|
} |
|
if (y != z) { /* y should not be nil in this case */ |
|
|
|
#ifdef DEBUG_ASSERT |
|
Assert( (y!=it->nil),"y is nil in DeleteNode \n"); |
|
#endif |
|
/* y is the node to splice out and x is its child */ |
|
|
|
y->maxHigh = INT_MIN; |
|
y->left=z->left; |
|
y->right=z->right; |
|
y->parent=z->parent; |
|
z->left->parent=z->right->parent=y; |
|
if (z == z->parent->left) |
|
z->parent->left=y; |
|
else |
|
z->parent->right=y; |
|
FixUpMaxHigh(it, x->parent); |
|
if (!(y->red)) { |
|
y->red = z->red; |
|
DeleteFixUp(it, x); |
|
} else |
|
y->red = z->red; |
|
yasm_xfree(z); |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not black in ITDelete"); |
|
Assert((it->nil->maxHigh=LONG_MIN),"nil->maxHigh != LONG_MIN in ITDelete"); |
|
#endif |
|
} else { |
|
FixUpMaxHigh(it, x->parent); |
|
if (!(y->red)) |
|
DeleteFixUp(it, x); |
|
yasm_xfree(y); |
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
IT_CheckAssumptions(it); |
|
#elif defined(DEBUG_ASSERT) |
|
Assert(!it->nil->red,"nil not black in ITDelete"); |
|
Assert((it->nil->maxHigh=LONG_MIN),"nil->maxHigh != LONG_MIN in ITDelete"); |
|
#endif |
|
} |
|
return returnValue; |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: Overlap */ |
|
/**/ |
|
/* INPUTS: [a1,a2] and [b1,b2] are the low and high endpoints of two */ |
|
/* closed intervals. */ |
|
/**/ |
|
/* OUTPUT: stack containing pointers to the nodes between [low,high] */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/* EFFECT: returns 1 if the intervals overlap, and 0 otherwise */ |
|
/***********************************************************************/ |
|
|
|
static int |
|
Overlap(int a1, int a2, int b1, int b2) |
|
{ |
|
if (a1 <= b1) |
|
return (b1 <= a2); |
|
else |
|
return (a1 <= b2); |
|
} |
|
|
|
|
|
/***********************************************************************/ |
|
/* FUNCTION: Enumerate */ |
|
/**/ |
|
/* INPUTS: tree is the tree to look for intervals overlapping the */ |
|
/* closed interval [low,high] */ |
|
/**/ |
|
/* OUTPUT: stack containing pointers to the nodes overlapping */ |
|
/* [low,high] */ |
|
/**/ |
|
/* Modifies Input: none */ |
|
/**/ |
|
/* EFFECT: Returns a stack containing pointers to nodes containing */ |
|
/* intervals which overlap [low,high] in O(max(N,k*log(N))) */ |
|
/* where N is the number of intervals in the tree and k is */ |
|
/* the number of overlapping intervals */ |
|
/**/ |
|
/* Note: This basic idea for this function comes from the */ |
|
/* _Introduction_To_Algorithms_ book by Cormen et al, but */ |
|
/* modifications were made to return all overlapping intervals */ |
|
/* instead of just the first overlapping interval as in the */ |
|
/* book. The natural way to do this would require recursive */ |
|
/* calls of a basic search function. I translated the */ |
|
/* recursive version into an interative version with a stack */ |
|
/* as described below. */ |
|
/***********************************************************************/ |
|
|
|
|
|
|
|
/* The basic idea for the function below is to take the IntervalSearch |
|
* function from the book and modify to find all overlapping intervals |
|
* instead of just one. This means that any time we take the left |
|
* branch down the tree we must also check the right branch if and only if |
|
* we find an overlapping interval in that left branch. Note this is a |
|
* recursive condition because if we go left at the root then go left |
|
* again at the first left child and find an overlap in the left subtree |
|
* of the left child of root we must recursively check the right subtree |
|
* of the left child of root as well as the right child of root. |
|
*/ |
|
void |
|
IT_enumerate(IntervalTree *it, long low, long high, void *cbd, |
|
void (*callback) (IntervalTreeNode *node, void *cbd)) |
|
{ |
|
IntervalTreeNode *x=it->root->left; |
|
int stuffToDo = (x != it->nil); |
|
|
|
/* Possible speed up: add min field to prune right searches */ |
|
|
|
#ifdef DEBUG_ASSERT |
|
Assert((it->recursionNodeStackTop == 1), |
|
"recursionStack not empty when entering IntervalTree::Enumerate"); |
|
#endif |
|
it->currentParent = 0; |
|
|
|
while (stuffToDo) { |
|
if (Overlap(low,high,x->low,x->high) ) { |
|
callback(x, cbd); |
|
it->recursionNodeStack[it->currentParent].tryRightBranch=1; |
|
} |
|
if(x->left->maxHigh >= low) { /* implies x != nil */ |
|
if (it->recursionNodeStackTop == it->recursionNodeStackSize) { |
|
it->recursionNodeStackSize *= 2; |
|
it->recursionNodeStack = (it_recursion_node *) |
|
yasm_xrealloc(it->recursionNodeStack, |
|
it->recursionNodeStackSize * sizeof(it_recursion_node)); |
|
} |
|
it->recursionNodeStack[it->recursionNodeStackTop].start_node = x; |
|
it->recursionNodeStack[it->recursionNodeStackTop].tryRightBranch = 0; |
|
it->recursionNodeStack[it->recursionNodeStackTop].parentIndex = it->currentParent; |
|
it->currentParent = it->recursionNodeStackTop++; |
|
x = x->left; |
|
} else { |
|
x = x->right; |
|
} |
|
stuffToDo = (x != it->nil); |
|
while (!stuffToDo && (it->recursionNodeStackTop > 1)) { |
|
if (it->recursionNodeStack[--it->recursionNodeStackTop].tryRightBranch) { |
|
x=it->recursionNodeStack[it->recursionNodeStackTop].start_node->right; |
|
it->currentParent=it->recursionNodeStack[it->recursionNodeStackTop].parentIndex; |
|
it->recursionNodeStack[it->currentParent].tryRightBranch=1; |
|
stuffToDo = (x != it->nil); |
|
} |
|
} |
|
} |
|
#ifdef DEBUG_ASSERT |
|
Assert((it->recursionNodeStackTop == 1), |
|
"recursionStack not empty when exiting IntervalTree::Enumerate"); |
|
#endif |
|
} |
|
|
|
#ifdef CHECK_INTERVAL_TREE_ASSUMPTIONS |
|
|
|
static int |
|
CheckMaxHighFieldsHelper(const IntervalTree *it, IntervalTreeNode *y, |
|
int currentHigh, int match) |
|
{ |
|
if (y != it->nil) { |
|
match = CheckMaxHighFieldsHelper(it, y->left, currentHigh, match) ? |
|
1 : match; |
|
VERIFY(y->high <= currentHigh); |
|
if (y->high == currentHigh) |
|
match = 1; |
|
match = CheckMaxHighFieldsHelper(it, y->right, currentHigh, match) ? |
|
1 : match; |
|
} |
|
return match; |
|
} |
|
|
|
|
|
|
|
/* Make sure the maxHigh fields for everything makes sense. * |
|
* If something is wrong, print a warning and exit */ |
|
static void |
|
CheckMaxHighFields(const IntervalTree *it, IntervalTreeNode *x) |
|
{ |
|
if (x != it->nil) { |
|
CheckMaxHighFields(it, x->left); |
|
if(!(CheckMaxHighFieldsHelper(it, x, x->maxHigh, 0) > 0)) { |
|
fprintf(stderr, "error found in CheckMaxHighFields.\n"); |
|
abort(); |
|
} |
|
CheckMaxHighFields(it, x->right); |
|
} |
|
} |
|
|
|
static void |
|
IT_CheckAssumptions(const IntervalTree *it) |
|
{ |
|
VERIFY(it->nil->low == INT_MIN); |
|
VERIFY(it->nil->high == INT_MIN); |
|
VERIFY(it->nil->maxHigh == INT_MIN); |
|
VERIFY(it->root->low == INT_MAX); |
|
VERIFY(it->root->high == INT_MAX); |
|
VERIFY(it->root->maxHigh == INT_MAX); |
|
VERIFY(it->nil->data == NULL); |
|
VERIFY(it->root->data == NULL); |
|
VERIFY(it->nil->red == 0); |
|
VERIFY(it->root->red == 0); |
|
CheckMaxHighFields(it, it->root->left); |
|
} |
|
#endif |
|
|
|
|