mirror of https://github.com/yasm/yasm.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3954 lines
115 KiB
3954 lines
115 KiB
/* |
|
** Copyright (c) 1991, 1994, 1997, 1998 D. Richard Hipp |
|
** |
|
** This file contains all sources (including headers) to the LEMON |
|
** LALR(1) parser generator. The sources have been combined into a |
|
** single file to make it easy to include LEMON as part of another |
|
** program. |
|
** |
|
** This program is free software; you can redistribute it and/or |
|
** modify it under the terms of the GNU General Public |
|
** License as published by the Free Software Foundation; either |
|
** version 2 of the License, or (at your option) any later version. |
|
** |
|
** This program is distributed in the hope that it will be useful, |
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
** General Public License for more details. |
|
** |
|
** You should have received a copy of the GNU General Public |
|
** License along with this library; if not, write to the |
|
** Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
|
** Boston, MA 02111-1307, USA. |
|
** |
|
** Author contact information: |
|
** drh@acm.org |
|
** http://www.hwaci.com/drh/ |
|
** |
|
** $IdPath$ |
|
** $Id: lemon.c,v 1.6 2002/04/07 21:57:43 peter Exp $ |
|
*/ |
|
#include <stdio.h> |
|
#include <stdarg.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <ctype.h> |
|
|
|
/* |
|
* Wrapper around "isupper()", "islower()", etc. to cast the argument to |
|
* "unsigned char", so that they at least handle non-ASCII 8-bit characters |
|
* (and don't provoke a pile of warnings from GCC). |
|
*/ |
|
#define safe_isupper(c) isupper((unsigned char)(c)) |
|
#define safe_islower(c) islower((unsigned char)(c)) |
|
#define safe_isalpha(c) isalpha((unsigned char)(c)) |
|
#define safe_isalnum(c) isalnum((unsigned char)(c)) |
|
#define safe_isspace(c) isspace((unsigned char)(c)) |
|
|
|
extern int access(const char *, int); |
|
|
|
#ifndef __WIN32__ |
|
# if defined(_WIN32) || defined(WIN32) |
|
# define __WIN32__ |
|
# endif |
|
#endif |
|
|
|
/* #define PRIVATE static */ |
|
#define PRIVATE |
|
|
|
#ifdef TEST |
|
#define MAXRHS 5 /* Set low to exercise exception code */ |
|
#else |
|
#define MAXRHS 1000 |
|
#endif |
|
|
|
/********** From the file "struct.h" *************************************/ |
|
/* |
|
** Principal data structures for the LEMON parser generator. |
|
*/ |
|
|
|
typedef enum {BOOL_FALSE=0, BOOL_TRUE} Boolean; |
|
|
|
/* Symbols (terminals and nonterminals) of the grammar are stored |
|
** in the following: */ |
|
struct symbol { |
|
char *name; /* Name of the symbol */ |
|
int index; /* Index number for this symbol */ |
|
enum { |
|
TERMINAL, |
|
NONTERMINAL |
|
} type; /* Symbols are all either TERMINALS or NTs */ |
|
struct rule *rule; /* Linked list of rules of this (if an NT) */ |
|
int prec; /* Precedence if defined (-1 otherwise) */ |
|
enum e_assoc { |
|
LEFT, |
|
RIGHT, |
|
NONE, |
|
UNK |
|
} assoc; /* Associativity if predecence is defined */ |
|
char *firstset; /* First-set for all rules of this symbol */ |
|
Boolean lambda; /* True if NT and can generate an empty string */ |
|
char *destructor; /* Code which executes whenever this symbol is |
|
** popped from the stack during error processing */ |
|
int destructorln; /* Line number of destructor code */ |
|
char *datatype; /* The data type of information held by this |
|
** object. Only used if type==NONTERMINAL */ |
|
int dtnum; /* The data type number. In the parser, the value |
|
** stack is a union. The .yy%d element of this |
|
** union is the correct data type for this object */ |
|
}; |
|
|
|
/* Each production rule in the grammar is stored in the following |
|
** structure. */ |
|
struct rule { |
|
struct symbol *lhs; /* Left-hand side of the rule */ |
|
char *lhsalias; /* Alias for the LHS (NULL if none) */ |
|
int ruleline; /* Line number for the rule */ |
|
int nrhs; /* Number of RHS symbols */ |
|
struct symbol **rhs; /* The RHS symbols */ |
|
char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
|
int line; /* Line number at which code begins */ |
|
char *code; /* The code executed when this rule is reduced */ |
|
struct symbol *precsym; /* Precedence symbol for this rule */ |
|
int index; /* An index number for this rule */ |
|
Boolean canReduce; /* True if this rule is ever reduced */ |
|
struct rule *nextlhs; /* Next rule with the same LHS */ |
|
struct rule *next; /* Next rule in the global list */ |
|
}; |
|
|
|
/* A configuration is a production rule of the grammar together with |
|
** a mark (dot) showing how much of that rule has been processed so far. |
|
** Configurations also contain a follow-set which is a list of terminal |
|
** symbols which are allowed to immediately follow the end of the rule. |
|
** Every configuration is recorded as an instance of the following: */ |
|
struct config { |
|
struct rule *rp; /* The rule upon which the configuration is based */ |
|
int dot; /* The parse point */ |
|
char *fws; /* Follow-set for this configuration only */ |
|
struct plink *fplp; /* Follow-set forward propagation links */ |
|
struct plink *bplp; /* Follow-set backwards propagation links */ |
|
struct state *stp; /* Pointer to state which contains this */ |
|
enum { |
|
COMPLETE, /* The status is used during followset and */ |
|
INCOMPLETE /* shift computations */ |
|
} status; |
|
struct config *next; /* Next configuration in the state */ |
|
struct config *bp; /* The next basis configuration */ |
|
}; |
|
|
|
/* Every shift or reduce operation is stored as one of the following */ |
|
struct action { |
|
struct symbol *sp; /* The look-ahead symbol */ |
|
enum e_action { |
|
SHIFT, |
|
ACCEPT, |
|
REDUCE, |
|
ERROR, |
|
CONFLICT, /* Was a reduce, but part of a conflict */ |
|
SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
|
RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
|
NOT_USED /* Deleted by compression */ |
|
} type; |
|
union { |
|
struct state *stp; /* The new state, if a shift */ |
|
struct rule *rp; /* The rule, if a reduce */ |
|
} x; |
|
struct action *next; /* Next action for this state */ |
|
struct action *collide; /* Next action with the same hash */ |
|
}; |
|
|
|
/* Each state of the generated parser's finite state machine |
|
** is encoded as an instance of the following structure. */ |
|
struct state { |
|
struct config *bp; /* The basis configurations for this state */ |
|
struct config *cfp; /* All configurations in this set */ |
|
int index; /* Sequencial number for this state */ |
|
struct action *ap; /* Array of actions for this state */ |
|
unsigned int naction; /* Number of actions for this state */ |
|
int tabstart; /* First index of the action table */ |
|
int tabdfltact; /* Default action */ |
|
}; |
|
|
|
/* A followset propagation link indicates that the contents of one |
|
** configuration followset should be propagated to another whenever |
|
** the first changes. */ |
|
struct plink { |
|
struct config *cfp; /* The configuration to which linked */ |
|
struct plink *next; /* The next propagate link */ |
|
}; |
|
|
|
/* The state vector for the entire parser generator is recorded as |
|
** follows. (LEMON uses no global variables and makes little use of |
|
** static variables. Fields in the following structure can be thought |
|
** of as begin global variables in the program.) */ |
|
struct lemon { |
|
struct state **sorted; /* Table of states sorted by state number */ |
|
struct rule *rule; /* List of all rules */ |
|
int nstate; /* Number of states */ |
|
int nrule; /* Number of rules */ |
|
int nsymbol; /* Number of terminal and nonterminal symbols */ |
|
int nterminal; /* Number of terminal symbols */ |
|
struct symbol **symbols; /* Sorted array of pointers to symbols */ |
|
int errorcnt; /* Number of errors */ |
|
struct symbol *errsym; /* The error symbol */ |
|
char *name; /* Name of the generated parser */ |
|
char *arg; /* Declaration of the 3th argument to parser */ |
|
char *tokentype; /* Type of terminal symbols in the parser stack */ |
|
char *start; /* Name of the start symbol for the grammar */ |
|
char *stacksize; /* Size of the parser stack */ |
|
char *include; /* Code to put at the start of the C file */ |
|
int includeln; /* Line number for start of include code */ |
|
char *error; /* Code to execute when an error is seen */ |
|
int errorln; /* Line number for start of error code */ |
|
char *overflow; /* Code to execute on a stack overflow */ |
|
int overflowln; /* Line number for start of overflow code */ |
|
char *failure; /* Code to execute on parser failure */ |
|
int failureln; /* Line number for start of failure code */ |
|
char *accept; /* Code to execute when the parser excepts */ |
|
int acceptln; /* Line number for the start of accept code */ |
|
char *extracode; /* Code appended to the generated file */ |
|
int extracodeln; /* Line number for the start of the extra code */ |
|
char *tokendest; /* Code to execute to destroy token data */ |
|
int tokendestln; /* Line number for token destroyer code */ |
|
char *filename; /* Name of the input file */ |
|
char *outname; /* Name of the current output file */ |
|
char *tokenprefix; /* A prefix added to token names in the .h file */ |
|
int nconflict; /* Number of parsing conflicts */ |
|
int tablesize; /* Size of the parse tables */ |
|
int basisflag; /* Print only basis configurations */ |
|
char *argv0; /* Name of the program */ |
|
}; |
|
|
|
#define MemoryCheck(X) if((X)==0){ \ |
|
memory_error(); \ |
|
} |
|
|
|
void memory_error(void); |
|
char *msort(char *, char **, int (*)(const void *, const void *)); |
|
|
|
/******** From the file "action.h" *************************************/ |
|
struct action *Action_new(void); |
|
struct action *Action_sort(struct action *); |
|
void Action_add(struct action **, enum e_action, struct symbol *, void *); |
|
|
|
/********* From the file "assert.h" ************************************/ |
|
void myassert(const char *, int); |
|
#ifndef NDEBUG |
|
# define assert(X) if(!(X))myassert(__FILE__,__LINE__) |
|
#else |
|
# define assert(X) |
|
#endif |
|
|
|
/********** From the file "build.h" ************************************/ |
|
void FindRulePrecedences(struct lemon *); |
|
void FindFirstSets(struct lemon *); |
|
void FindStates(struct lemon *); |
|
void FindLinks(struct lemon *); |
|
void FindFollowSets(struct lemon *); |
|
void FindActions(struct lemon *); |
|
|
|
/********* From the file "configlist.h" *********************************/ |
|
void Configlist_init(void); |
|
struct config *Configlist_add(struct rule *, int); |
|
struct config *Configlist_addbasis(struct rule *, int); |
|
void Configlist_closure(struct lemon *); |
|
void Configlist_sort(void); |
|
void Configlist_sortbasis(void); |
|
struct config *Configlist_return(void); |
|
struct config *Configlist_basis(void); |
|
void Configlist_eat(struct config *); |
|
void Configlist_reset(void); |
|
|
|
/********* From the file "error.h" ***************************************/ |
|
#if __GNUC__ >= 2 |
|
void ErrorMsg( const char *, int, const char *, ... ) |
|
__attribute__((format (printf, 3, 4))); |
|
#else |
|
void ErrorMsg( const char *, int, const char *, ... ); |
|
#endif |
|
|
|
/****** From the file "option.h" ******************************************/ |
|
struct s_options { |
|
enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
|
OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type; |
|
const char *label; |
|
union { |
|
void *val; |
|
void (*fflag)(int); |
|
void (*fint)(int); |
|
void (*fdbl)(double); |
|
void (*fstr)(const char *); |
|
} arg; |
|
const char *message; |
|
}; |
|
int OptInit(char**,struct s_options*,FILE*); |
|
int OptNArgs(void); |
|
char *OptArg(int); |
|
void OptErr(int); |
|
void OptPrint(void); |
|
|
|
/******** From the file "parse.h" *****************************************/ |
|
void Parse(struct lemon *lemp); |
|
|
|
/********* From the file "plink.h" ***************************************/ |
|
struct plink *Plink_new(void); |
|
void Plink_add(struct plink **, struct config *); |
|
void Plink_copy(struct plink **, struct plink *); |
|
void Plink_delete(struct plink *); |
|
|
|
/********** From the file "report.h" *************************************/ |
|
void Reprint(struct lemon *); |
|
void ReportOutput(struct lemon *); |
|
void ReportTable(struct lemon *, int); |
|
void ReportHeader(struct lemon *); |
|
void CompressTables(struct lemon *); |
|
|
|
/********** From the file "set.h" ****************************************/ |
|
void SetSize(int N); /* All sets will be of size N */ |
|
char *SetNew(void); /* A new set for element 0..N */ |
|
void SetFree(char*); /* Deallocate a set */ |
|
int SetAdd(char*,int); /* Add element to a set */ |
|
int SetUnion(char *A,char *B); /* A <- A U B, thru element N */ |
|
|
|
#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ |
|
|
|
/**************** From the file "table.h" *********************************/ |
|
/* |
|
** All code in this file has been automatically generated |
|
** from a specification in the file |
|
** "table.q" |
|
** by the associative array code building program "aagen". |
|
** Do not edit this file! Instead, edit the specification |
|
** file, then rerun aagen. |
|
*/ |
|
/* |
|
** Code for processing tables in the LEMON parser generator. |
|
*/ |
|
|
|
/* Routines for handling a strings */ |
|
|
|
char *Strsafe(const char *); |
|
|
|
void Strsafe_init(void); |
|
int Strsafe_insert(char *); |
|
char *Strsafe_find(const char *); |
|
|
|
/* Routines for handling symbols of the grammar */ |
|
|
|
struct symbol *Symbol_new(const char *x); |
|
int Symbolcmpp(const void *, const void *); |
|
void Symbol_init(void); |
|
int Symbol_insert(struct symbol *, char *); |
|
struct symbol *Symbol_find(const char *); |
|
struct symbol *Symbol_Nth(int); |
|
int Symbol_count(void); |
|
struct symbol **Symbol_arrayof(void); |
|
|
|
/* Routines to manage the state table */ |
|
|
|
int Configcmp(const void *, const void *); |
|
struct state *State_new(void); |
|
void State_init(void); |
|
int State_insert(struct state *, struct config *); |
|
struct state *State_find(struct config *); |
|
struct state **State_arrayof(void); |
|
|
|
/* Routines used for efficiency in Configlist_add */ |
|
|
|
void Configtable_init(void); |
|
int Configtable_insert(struct config *); |
|
struct config *Configtable_find(struct config *); |
|
void Configtable_clear(int(*)(struct config *)); |
|
/****************** From the file "action.c" *******************************/ |
|
/* |
|
** Routines processing parser actions in the LEMON parser generator. |
|
*/ |
|
|
|
/* Allocate a new parser action */ |
|
struct action *Action_new(void){ |
|
static struct action *freelist = 0; |
|
struct action *new; |
|
|
|
if( freelist==0 ){ |
|
int i; |
|
int amt = 100; |
|
freelist = (struct action *)malloc( sizeof(struct action)*amt ); |
|
if( freelist==0 ){ |
|
fprintf(stderr,"Unable to allocate memory for a new parser action."); |
|
exit(1); |
|
} |
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
|
freelist[amt-1].next = 0; |
|
} |
|
new = freelist; |
|
freelist = freelist->next; |
|
return new; |
|
} |
|
|
|
/* Compare two actions */ |
|
static int actioncmp(const void *ap1_arg, const void *ap2_arg) |
|
{ |
|
const struct action *ap1 = ap1_arg, *ap2 = ap2_arg; |
|
int rc; |
|
rc = ap1->sp->index - ap2->sp->index; |
|
if( rc==0 ) rc = (int)ap1->type - (int)ap2->type; |
|
if( rc==0 ){ |
|
assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT); |
|
assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT); |
|
rc = ap1->x.rp->index - ap2->x.rp->index; |
|
} |
|
return rc; |
|
} |
|
|
|
/* Sort parser actions */ |
|
struct action *Action_sort(struct action *ap) |
|
{ |
|
ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp); |
|
return ap; |
|
} |
|
|
|
void Action_add(struct action **app, enum e_action type, struct symbol *sp, |
|
void *arg) |
|
{ |
|
struct action *new; |
|
new = Action_new(); |
|
new->next = *app; |
|
*app = new; |
|
new->type = type; |
|
new->sp = sp; |
|
if( type==SHIFT ){ |
|
new->x.stp = (struct state *)arg; |
|
}else{ |
|
new->x.rp = (struct rule *)arg; |
|
} |
|
} |
|
/********************** From the file "assert.c" ****************************/ |
|
/* |
|
** A more efficient way of handling assertions. |
|
*/ |
|
void myassert(const char *file, int line) |
|
{ |
|
fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file); |
|
exit(1); |
|
} |
|
/********************** From the file "build.c" *****************************/ |
|
/* |
|
** Routines to construction the finite state machine for the LEMON |
|
** parser generator. |
|
*/ |
|
|
|
/* Find a precedence symbol of every rule in the grammar. |
|
** |
|
** Those rules which have a precedence symbol coded in the input |
|
** grammar using the "[symbol]" construct will already have the |
|
** rp->precsym field filled. Other rules take as their precedence |
|
** symbol the first RHS symbol with a defined precedence. If there |
|
** are not RHS symbols with a defined precedence, the precedence |
|
** symbol field is left blank. |
|
*/ |
|
void FindRulePrecedences(struct lemon *xp) |
|
{ |
|
struct rule *rp; |
|
for(rp=xp->rule; rp; rp=rp->next){ |
|
if( rp->precsym==0 ){ |
|
int i; |
|
for(i=0; i<rp->nrhs; i++){ |
|
if( rp->rhs[i]->prec>=0 ){ |
|
rp->precsym = rp->rhs[i]; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/* Find all nonterminals which will generate the empty string. |
|
** Then go back and compute the first sets of every nonterminal. |
|
** The first set is the set of all terminal symbols which can begin |
|
** a string generated by that nonterminal. |
|
*/ |
|
void FindFirstSets(struct lemon *lemp) |
|
{ |
|
int i; |
|
struct rule *rp; |
|
int progress; |
|
|
|
for(i=0; i<lemp->nsymbol; i++){ |
|
lemp->symbols[i]->lambda = BOOL_FALSE; |
|
} |
|
for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
|
lemp->symbols[i]->firstset = SetNew(); |
|
} |
|
|
|
/* First compute all lambdas */ |
|
do{ |
|
progress = 0; |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
if( rp->lhs->lambda ) continue; |
|
for(i=0; i<rp->nrhs; i++){ |
|
if( rp->rhs[i]->lambda==BOOL_FALSE ) break; |
|
} |
|
if( i==rp->nrhs ){ |
|
rp->lhs->lambda = BOOL_TRUE; |
|
progress = 1; |
|
} |
|
} |
|
}while( progress ); |
|
|
|
/* Now compute all first sets */ |
|
do{ |
|
struct symbol *s1, *s2; |
|
progress = 0; |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
s1 = rp->lhs; |
|
for(i=0; i<rp->nrhs; i++){ |
|
s2 = rp->rhs[i]; |
|
if( s2->type==TERMINAL ){ |
|
progress += SetAdd(s1->firstset,s2->index); |
|
break; |
|
}else if( s1==s2 ){ |
|
if( s1->lambda==BOOL_FALSE ) break; |
|
}else{ |
|
progress += SetUnion(s1->firstset,s2->firstset); |
|
if( s2->lambda==BOOL_FALSE ) break; |
|
} |
|
} |
|
} |
|
}while( progress ); |
|
return; |
|
} |
|
|
|
/* Compute all LR(0) states for the grammar. Links |
|
** are added to between some states so that the LR(1) follow sets |
|
** can be computed later. |
|
*/ |
|
PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
|
void FindStates(lemp) |
|
struct lemon *lemp; |
|
{ |
|
struct symbol *sp; |
|
struct rule *rp; |
|
|
|
Configlist_init(); |
|
|
|
/* Find the start symbol */ |
|
if( lemp->start ){ |
|
sp = Symbol_find(lemp->start); |
|
if( sp==0 ){ |
|
ErrorMsg(lemp->filename,0, |
|
"The specified start symbol \"%s\" is not \ |
|
in a nonterminal of the grammar. \"%s\" will be used as the start \ |
|
symbol instead.",lemp->start,lemp->rule->lhs->name); |
|
lemp->errorcnt++; |
|
sp = lemp->rule->lhs; |
|
} |
|
}else{ |
|
sp = lemp->rule->lhs; |
|
} |
|
|
|
/* Make sure the start symbol doesn't occur on the right-hand side of |
|
** any rule. Report an error if it does. (YACC would generate a new |
|
** start symbol in this case.) */ |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
int i; |
|
for(i=0; i<rp->nrhs; i++){ |
|
if( rp->rhs[i]==sp ){ |
|
ErrorMsg(lemp->filename,0, |
|
"The start symbol \"%s\" occurs on the \ |
|
right-hand side of a rule. This will result in a parser which \ |
|
does not work properly.",sp->name); |
|
lemp->errorcnt++; |
|
} |
|
} |
|
} |
|
|
|
/* The basis configuration set for the first state |
|
** is all rules which have the start symbol as their |
|
** left-hand side */ |
|
for(rp=sp->rule; rp; rp=rp->nextlhs){ |
|
struct config *newcfp; |
|
newcfp = Configlist_addbasis(rp,0); |
|
SetAdd(newcfp->fws,0); |
|
} |
|
|
|
/* Compute the first state. All other states will be |
|
** computed automatically during the computation of the first one. |
|
** The returned pointer to the first state is not used. */ |
|
(void)getstate(lemp); |
|
return; |
|
} |
|
|
|
/* Return a pointer to a state which is described by the configuration |
|
** list which has been built from calls to Configlist_add. |
|
*/ |
|
PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
|
PRIVATE struct state *getstate(struct lemon *lemp) |
|
{ |
|
struct config *cfp, *bp; |
|
struct state *stp; |
|
|
|
/* Extract the sorted basis of the new state. The basis was constructed |
|
** by prior calls to "Configlist_addbasis()". */ |
|
Configlist_sortbasis(); |
|
bp = Configlist_basis(); |
|
|
|
/* Get a state with the same basis */ |
|
stp = State_find(bp); |
|
if( stp ){ |
|
/* A state with the same basis already exists! Copy all the follow-set |
|
** propagation links from the state under construction into the |
|
** preexisting state, then return a pointer to the preexisting state */ |
|
struct config *x, *y; |
|
for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
|
Plink_copy(&y->bplp,x->bplp); |
|
Plink_delete(x->fplp); |
|
x->fplp = x->bplp = 0; |
|
} |
|
cfp = Configlist_return(); |
|
Configlist_eat(cfp); |
|
}else{ |
|
/* This really is a new state. Construct all the details */ |
|
Configlist_closure(lemp); /* Compute the configuration closure */ |
|
Configlist_sort(); /* Sort the configuration closure */ |
|
cfp = Configlist_return(); /* Get a pointer to the config list */ |
|
stp = State_new(); /* A new state structure */ |
|
MemoryCheck(stp); |
|
stp->bp = bp; /* Remember the configuration basis */ |
|
stp->cfp = cfp; /* Remember the configuration closure */ |
|
stp->index = lemp->nstate++; /* Every state gets a sequence number */ |
|
stp->ap = 0; /* No actions, yet. */ |
|
State_insert(stp,stp->bp); /* Add to the state table */ |
|
buildshifts(lemp,stp); /* Recursively compute successor states */ |
|
} |
|
return stp; |
|
} |
|
|
|
/* Construct all successor states to the given state. A "successor" |
|
** state is any state which can be reached by a shift action. |
|
*/ |
|
PRIVATE void buildshifts( |
|
struct lemon *lemp, |
|
struct state *stp) /* The state from which successors are computed */ |
|
{ |
|
struct config *cfp; /* For looping thru the config closure of "stp" */ |
|
struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
|
struct config *new; /* */ |
|
struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
|
struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
|
struct state *newstp; /* A pointer to a successor state */ |
|
|
|
/* Each configuration becomes complete after it contibutes to a successor |
|
** state. Initially, all configurations are incomplete */ |
|
for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
|
|
|
/* Loop through all configurations of the state "stp" */ |
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
|
if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
|
if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
|
Configlist_reset(); /* Reset the new config set */ |
|
sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
|
|
|
/* For every configuration in the state "stp" which has the symbol "sp" |
|
** following its dot, add the same configuration to the basis set under |
|
** construction but with the dot shifted one symbol to the right. */ |
|
for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
|
if( bcfp->status==COMPLETE ) continue; /* Already used */ |
|
if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
|
bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
|
if( bsp!=sp ) continue; /* Must be same as for "cfp" */ |
|
bcfp->status = COMPLETE; /* Mark this config as used */ |
|
new = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
|
Plink_add(&new->bplp,bcfp); |
|
} |
|
|
|
/* Get a pointer to the state described by the basis configuration set |
|
** constructed in the preceding loop */ |
|
newstp = getstate(lemp); |
|
|
|
/* The state "newstp" is reached from the state "stp" by a shift action |
|
** on the symbol "sp" */ |
|
Action_add(&stp->ap,SHIFT,sp,newstp); |
|
} |
|
} |
|
|
|
/* |
|
** Construct the propagation links |
|
*/ |
|
void FindLinks(struct lemon *lemp) |
|
{ |
|
int i; |
|
struct config *cfp, *other; |
|
struct state *stp; |
|
struct plink *plp; |
|
|
|
/* Housekeeping detail: |
|
** Add to every propagate link a pointer back to the state to |
|
** which the link is attached. */ |
|
for(i=0; i<lemp->nstate; i++){ |
|
stp = lemp->sorted[i]; |
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
|
cfp->stp = stp; |
|
} |
|
} |
|
|
|
/* Convert all backlinks into forward links. Only the forward |
|
** links are used in the follow-set computation. */ |
|
for(i=0; i<lemp->nstate; i++){ |
|
stp = lemp->sorted[i]; |
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
|
for(plp=cfp->bplp; plp; plp=plp->next){ |
|
other = plp->cfp; |
|
Plink_add(&other->fplp,cfp); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Compute all followsets. |
|
** |
|
** A followset is the set of all symbols which can come immediately |
|
** after a configuration. |
|
*/ |
|
void FindFollowSets(struct lemon *lemp) |
|
{ |
|
int i; |
|
struct config *cfp; |
|
struct plink *plp; |
|
int progress; |
|
int change; |
|
|
|
for(i=0; i<lemp->nstate; i++){ |
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
|
cfp->status = INCOMPLETE; |
|
} |
|
} |
|
|
|
do{ |
|
progress = 0; |
|
for(i=0; i<lemp->nstate; i++){ |
|
for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
|
if( cfp->status==COMPLETE ) continue; |
|
for(plp=cfp->fplp; plp; plp=plp->next){ |
|
change = SetUnion(plp->cfp->fws,cfp->fws); |
|
if( change ){ |
|
plp->cfp->status = INCOMPLETE; |
|
progress = 1; |
|
} |
|
} |
|
cfp->status = COMPLETE; |
|
} |
|
} |
|
}while( progress ); |
|
} |
|
|
|
static int resolve_conflict(struct action *, struct action *, struct symbol *); |
|
|
|
/* Compute the reduce actions, and resolve conflicts. |
|
*/ |
|
void FindActions(struct lemon *lemp) |
|
{ |
|
int i,j; |
|
struct config *cfp; |
|
struct state *stp; |
|
struct symbol *sp; |
|
struct rule *rp; |
|
|
|
/* Add all of the reduce actions |
|
** A reduce action is added for each element of the followset of |
|
** a configuration which has its dot at the extreme right. |
|
*/ |
|
for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
|
stp = lemp->sorted[i]; |
|
for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
|
if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
|
for(j=0; j<lemp->nterminal; j++){ |
|
if( SetFind(cfp->fws,j) ){ |
|
/* Add a reduce action to the state "stp" which will reduce by the |
|
** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
|
Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Add the accepting token */ |
|
if( lemp->start ){ |
|
sp = Symbol_find(lemp->start); |
|
if( sp==0 ) sp = lemp->rule->lhs; |
|
}else{ |
|
sp = lemp->rule->lhs; |
|
} |
|
/* Add to the first state (which is always the starting state of the |
|
** finite state machine) an action to ACCEPT if the lookahead is the |
|
** start nonterminal. */ |
|
Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
|
|
|
/* Resolve conflicts */ |
|
for(i=0; i<lemp->nstate; i++){ |
|
struct action *ap, *nap; |
|
struct state *stp2; |
|
stp2 = lemp->sorted[i]; |
|
assert( stp2->ap ); |
|
stp2->ap = Action_sort(stp2->ap); |
|
for(ap=stp2->ap; ap && ap->next; ap=nap){ |
|
for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
|
/* The two actions "ap" and "nap" have the same lookahead. |
|
** Figure out which one should be used */ |
|
lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym); |
|
} |
|
} |
|
} |
|
|
|
/* Report an error for each rule that can never be reduced. */ |
|
for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = BOOL_FALSE; |
|
for(i=0; i<lemp->nstate; i++){ |
|
struct action *ap; |
|
for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
|
if( ap->type==REDUCE ) ap->x.rp->canReduce = BOOL_TRUE; |
|
} |
|
} |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
if( rp->canReduce ) continue; |
|
ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
|
lemp->errorcnt++; |
|
} |
|
} |
|
|
|
/* Resolve a conflict between the two given actions. If the |
|
** conflict can't be resolve, return non-zero. |
|
** |
|
** NO LONGER TRUE: |
|
** To resolve a conflict, first look to see if either action |
|
** is on an error rule. In that case, take the action which |
|
** is not associated with the error rule. If neither or both |
|
** actions are associated with an error rule, then try to |
|
** use precedence to resolve the conflict. |
|
** |
|
** If either action is a SHIFT, then it must be apx. This |
|
** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
|
*/ |
|
static int resolve_conflict( |
|
struct action *apx, |
|
struct action *apy, |
|
struct symbol *errsym) /* The error symbol (if defined. NULL otherwise) */ |
|
{ |
|
struct symbol *spx, *spy; |
|
int errcnt = 0; |
|
assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ |
|
if( apx->type==SHIFT && apy->type==REDUCE ){ |
|
spx = apx->sp; |
|
spy = apy->x.rp->precsym; |
|
if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
|
/* Not enough precedence information. */ |
|
apy->type = CONFLICT; |
|
errcnt++; |
|
}else if( spx->prec>spy->prec ){ /* Lower precedence wins */ |
|
apy->type = RD_RESOLVED; |
|
}else if( spx->prec<spy->prec ){ |
|
apx->type = SH_RESOLVED; |
|
}else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
|
apy->type = RD_RESOLVED; /* associativity */ |
|
}else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
|
apx->type = SH_RESOLVED; |
|
}else{ |
|
assert( spx->prec==spy->prec && spx->assoc==NONE ); |
|
apy->type = CONFLICT; |
|
errcnt++; |
|
} |
|
}else if( apx->type==REDUCE && apy->type==REDUCE ){ |
|
spx = apx->x.rp->precsym; |
|
spy = apy->x.rp->precsym; |
|
if( spx==0 || spy==0 || spx->prec<0 || |
|
spy->prec<0 || spx->prec==spy->prec ){ |
|
apy->type = CONFLICT; |
|
errcnt++; |
|
}else if( spx->prec>spy->prec ){ |
|
apy->type = RD_RESOLVED; |
|
}else if( spx->prec<spy->prec ){ |
|
apx->type = RD_RESOLVED; |
|
} |
|
}else{ |
|
/* Can't happen. Shifts have to come before Reduces on the |
|
** list because the reduces were added last. Hence, if apx->type==REDUCE |
|
** then it is impossible for apy->type==SHIFT */ |
|
} |
|
return errcnt; |
|
} |
|
/********************* From the file "configlist.c" *************************/ |
|
/* |
|
** Routines to processing a configuration list and building a state |
|
** in the LEMON parser generator. |
|
*/ |
|
|
|
static struct config *freelist = 0; /* List of free configurations */ |
|
static struct config *current = 0; /* Top of list of configurations */ |
|
static struct config **currentend = 0; /* Last on list of configs */ |
|
static struct config *basis = 0; /* Top of list of basis configs */ |
|
static struct config **basisend = 0; /* End of list of basis configs */ |
|
|
|
struct config *newconfig(void); |
|
void deleteconfig(struct config *); |
|
|
|
/* Return a pointer to a new configuration */ |
|
PRIVATE struct config *newconfig(void){ |
|
struct config *new; |
|
if( freelist==0 ){ |
|
int i; |
|
int amt = 3; |
|
freelist = (struct config *)malloc( sizeof(struct config)*amt ); |
|
if( freelist==0 ){ |
|
fprintf(stderr,"Unable to allocate memory for a new configuration."); |
|
exit(1); |
|
} |
|
for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
|
freelist[amt-1].next = 0; |
|
} |
|
new = freelist; |
|
freelist = freelist->next; |
|
return new; |
|
} |
|
|
|
/* The configuration "old" is no longer used */ |
|
PRIVATE void deleteconfig(struct config *old) |
|
{ |
|
old->next = freelist; |
|
freelist = old; |
|
} |
|
|
|
/* Initialized the configuration list builder */ |
|
void Configlist_init(void){ |
|
current = 0; |
|
currentend = ¤t; |
|
basis = 0; |
|
basisend = &basis; |
|
Configtable_init(); |
|
return; |
|
} |
|
|
|
/* Initialized the configuration list builder */ |
|
void Configlist_reset(void){ |
|
current = 0; |
|
currentend = ¤t; |
|
basis = 0; |
|
basisend = &basis; |
|
Configtable_clear(0); |
|
return; |
|
} |
|
|
|
/* Add another configuration to the configuration list */ |
|
struct config *Configlist_add( |
|
struct rule *rp, /* The rule */ |
|
int dot) /* Index into the RHS of the rule where the dot goes */ |
|
{ |
|
struct config *cfp, model; |
|
|
|
assert( currentend!=0 ); |
|
model.rp = rp; |
|
model.dot = dot; |
|
cfp = Configtable_find(&model); |
|
if( cfp==0 ){ |
|
cfp = newconfig(); |
|
cfp->rp = rp; |
|
cfp->dot = dot; |
|
cfp->fws = SetNew(); |
|
cfp->stp = 0; |
|
cfp->fplp = cfp->bplp = 0; |
|
cfp->next = 0; |
|
cfp->bp = 0; |
|
*currentend = cfp; |
|
currentend = &cfp->next; |
|
Configtable_insert(cfp); |
|
} |
|
return cfp; |
|
} |
|
|
|
/* Add a basis configuration to the configuration list */ |
|
struct config *Configlist_addbasis(struct rule *rp, int dot) |
|
{ |
|
struct config *cfp, model; |
|
|
|
assert( basisend!=0 ); |
|
assert( currentend!=0 ); |
|
model.rp = rp; |
|
model.dot = dot; |
|
cfp = Configtable_find(&model); |
|
if( cfp==0 ){ |
|
cfp = newconfig(); |
|
cfp->rp = rp; |
|
cfp->dot = dot; |
|
cfp->fws = SetNew(); |
|
cfp->stp = 0; |
|
cfp->fplp = cfp->bplp = 0; |
|
cfp->next = 0; |
|
cfp->bp = 0; |
|
*currentend = cfp; |
|
currentend = &cfp->next; |
|
*basisend = cfp; |
|
basisend = &cfp->bp; |
|
Configtable_insert(cfp); |
|
} |
|
return cfp; |
|
} |
|
|
|
/* Compute the closure of the configuration list */ |
|
void Configlist_closure(struct lemon *lemp) |
|
{ |
|
struct config *cfp, *newcfp; |
|
struct rule *rp, *newrp; |
|
struct symbol *sp, *xsp; |
|
int i, dot; |
|
|
|
assert( currentend!=0 ); |
|
for(cfp=current; cfp; cfp=cfp->next){ |
|
rp = cfp->rp; |
|
dot = cfp->dot; |
|
if( dot>=rp->nrhs ) continue; |
|
sp = rp->rhs[dot]; |
|
if( sp->type==NONTERMINAL ){ |
|
if( sp->rule==0 && sp!=lemp->errsym ){ |
|
ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
|
sp->name); |
|
lemp->errorcnt++; |
|
} |
|
for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
|
newcfp = Configlist_add(newrp,0); |
|
for(i=dot+1; i<rp->nrhs; i++){ |
|
xsp = rp->rhs[i]; |
|
if( xsp->type==TERMINAL ){ |
|
SetAdd(newcfp->fws,xsp->index); |
|
break; |
|
}else{ |
|
SetUnion(newcfp->fws,xsp->firstset); |
|
if( xsp->lambda==BOOL_FALSE ) break; |
|
} |
|
} |
|
if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/* Sort the configuration list */ |
|
void Configlist_sort(void){ |
|
current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); |
|
currentend = 0; |
|
return; |
|
} |
|
|
|
/* Sort the basis configuration list */ |
|
void Configlist_sortbasis(void){ |
|
basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); |
|
basisend = 0; |
|
return; |
|
} |
|
|
|
/* Return a pointer to the head of the configuration list and |
|
** reset the list */ |
|
struct config *Configlist_return(void){ |
|
struct config *old; |
|
old = current; |
|
current = 0; |
|
currentend = 0; |
|
return old; |
|
} |
|
|
|
/* Return a pointer to the head of the configuration list and |
|
** reset the list */ |
|
struct config *Configlist_basis(void){ |
|
struct config *old; |
|
old = basis; |
|
basis = 0; |
|
basisend = 0; |
|
return old; |
|
} |
|
|
|
/* Free all elements of the given configuration list */ |
|
void Configlist_eat(struct config *cfp) |
|
{ |
|
struct config *nextcfp; |
|
for(; cfp; cfp=nextcfp){ |
|
nextcfp = cfp->next; |
|
assert( cfp->fplp==0 ); |
|
assert( cfp->bplp==0 ); |
|
if( cfp->fws ) SetFree(cfp->fws); |
|
deleteconfig(cfp); |
|
} |
|
return; |
|
} |
|
/***************** From the file "error.c" *********************************/ |
|
/* |
|
** Code for printing error message. |
|
*/ |
|
|
|
/* Find a good place to break "msg" so that its length is at least "min" |
|
** but no more than "max". Make the point as close to max as possible. |
|
*/ |
|
static int findbreak(char *msg, int min, int max) |
|
{ |
|
int i,spot; |
|
char c; |
|
for(i=spot=min; i<=max; i++){ |
|
c = msg[i]; |
|
if( c=='\t' ) msg[i] = ' '; |
|
if( c=='\n' ){ msg[i] = ' '; spot = i; break; } |
|
if( c==0 ){ spot = i; break; } |
|
if( c=='-' && i<max-1 ) spot = i+1; |
|
if( c==' ' ) spot = i; |
|
} |
|
return spot; |
|
} |
|
|
|
/* |
|
** The error message is split across multiple lines if necessary. The |
|
** splits occur at a space, if there is a space available near the end |
|
** of the line. |
|
*/ |
|
#define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */ |
|
#define LINEWIDTH 79 /* Max width of any output line */ |
|
#define PREFIXLIMIT 30 /* Max width of the prefix on each line */ |
|
void ErrorMsg(const char *filename, int lineno, const char *format, ...) |
|
{ |
|
char errmsg[ERRMSGSIZE]; |
|
char prefix[PREFIXLIMIT+10]; |
|
int errmsgsize; |
|
int prefixsize; |
|
int availablewidth; |
|
va_list ap; |
|
int end, restart, base; |
|
|
|
va_start(ap, format); |
|
/* Prepare a prefix to be prepended to every output line */ |
|
if( lineno>0 ){ |
|
sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno); |
|
}else{ |
|
sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename); |
|
} |
|
prefixsize = strlen(prefix); |
|
availablewidth = LINEWIDTH - prefixsize; |
|
|
|
/* Generate the error message */ |
|
vsprintf(errmsg,format,ap); |
|
va_end(ap); |
|
errmsgsize = strlen(errmsg); |
|
/* Remove trailing '\n's from the error message. */ |
|
while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){ |
|
errmsg[--errmsgsize] = 0; |
|
} |
|
|
|
/* Print the error message */ |
|
base = 0; |
|
while( errmsg[base]!=0 ){ |
|
end = restart = findbreak(&errmsg[base],0,availablewidth); |
|
restart += base; |
|
while( errmsg[restart]==' ' ) restart++; |
|
fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]); |
|
base = restart; |
|
} |
|
} |
|
/**************** From the file "main.c" ************************************/ |
|
/* |
|
** Main program file for the LEMON parser generator. |
|
*/ |
|
|
|
void setlempar(const char *); |
|
void setoutput(const char *); |
|
|
|
/* Report an out-of-memory condition and abort. This function |
|
** is used mostly by the "MemoryCheck" macro in struct.h |
|
*/ |
|
void memory_error(void){ |
|
fprintf(stderr,"Out of memory. Aborting...\n"); |
|
exit(1); |
|
} |
|
|
|
static const char *lempar_locations[] = { |
|
NULL, "lempar.c" |
|
}; |
|
|
|
void setlempar(const char *lempar) |
|
{ |
|
if (access(lempar, 004)) { |
|
perror(lempar); |
|
exit(1); |
|
} |
|
lempar_locations[0] = lempar; |
|
} |
|
|
|
static char *output_file = NULL; |
|
|
|
void setoutput(const char *base) |
|
{ |
|
if ((output_file = malloc(strlen(base) + 1))) |
|
sprintf(output_file, "%s.", base); |
|
} |
|
|
|
/* The main program. Parse the command line and do it... */ |
|
int main(int argc, char **argv) |
|
{ |
|
static int version = 0; |
|
static int rpflag = 0; |
|
static int basisflag = 0; |
|
static int compress = 0; |
|
static int quiet = 0; |
|
static int statistics = 0; |
|
static int mhflag = 0; |
|
static struct s_options options[] = { |
|
{OPT_FLAG, "b", {&basisflag}, "Print only the basis in report."}, |
|
{OPT_FLAG, "c", {&compress}, "Don't compress the action table."}, |
|
{OPT_FLAG, "g", {&rpflag}, "Print grammar without actions."}, |
|
{OPT_FLAG, "m", {&mhflag}, "Output a makeheaders compatible file."}, |
|
{OPT_FSTR, "o", {0}, "Set the dirname/basename for the output file(s)."}, |
|
{OPT_FLAG, "q", {&quiet}, "(Quiet) Don't print the report file."}, |
|
{OPT_FLAG, "s", {&statistics}, "Print parser stats to standard output."}, |
|
{OPT_FSTR, "t", {0}, "An alternative template -- instead of " |
|
"\"./lempar.c\"."}, |
|
{OPT_FLAG, "x", {&version}, "Print the version number."}, |
|
{OPT_FLAG,0,{0},0} |
|
}; |
|
int i; |
|
struct lemon lem; |
|
|
|
/* Initialize function union members of options array */ |
|
options[4].arg.fstr = setoutput; |
|
options[7].arg.fstr = setlempar; |
|
|
|
OptInit(argv,options,stderr); |
|
if( version ){ |
|
printf("Lemon version 1.0\n" |
|
"Copyright 1991-1997 by D. Richard Hipp\n" |
|
"Freely distributable under the GNU Public License.\n" |
|
); |
|
exit(0); |
|
} |
|
if( OptNArgs()!=1 ){ |
|
fprintf(stderr,"Exactly one filename argument is required.\n"); |
|
exit(1); |
|
} |
|
lem.errorcnt = 0; |
|
|
|
/* Initialize the machine */ |
|
Strsafe_init(); |
|
Symbol_init(); |
|
State_init(); |
|
lem.argv0 = argv[0]; |
|
lem.filename = OptArg(0); |
|
lem.basisflag = basisflag; |
|
lem.nconflict = 0; |
|
lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0; |
|
lem.stacksize = 0; |
|
lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest = |
|
lem.tokenprefix = lem.outname = lem.extracode = 0; |
|
lem.tablesize = 0; |
|
Symbol_new("$"); |
|
lem.errsym = Symbol_new("error"); |
|
|
|
/* Parse the input file */ |
|
Parse(&lem); |
|
if( lem.errorcnt ) exit(lem.errorcnt); |
|
if( lem.rule==0 ){ |
|
fprintf(stderr,"Empty grammar.\n"); |
|
exit(1); |
|
} |
|
|
|
/* Count and index the symbols of the grammar */ |
|
lem.nsymbol = Symbol_count(); |
|
Symbol_new("{default}"); |
|
lem.symbols = Symbol_arrayof(); |
|
qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),Symbolcmpp); |
|
for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; |
|
for(i=1; safe_isupper(lem.symbols[i]->name[0]); i++); |
|
lem.nterminal = i; |
|
|
|
/* Generate a reprint of the grammar, if requested on the command line */ |
|
if( rpflag ){ |
|
Reprint(&lem); |
|
}else{ |
|
/* Initialize the size for all follow and first sets */ |
|
SetSize(lem.nterminal); |
|
|
|
/* Find the precedence for every production rule (that has one) */ |
|
FindRulePrecedences(&lem); |
|
|
|
/* Compute the lambda-nonterminals and the first-sets for every |
|
** nonterminal */ |
|
FindFirstSets(&lem); |
|
|
|
/* Compute all LR(0) states. Also record follow-set propagation |
|
** links so that the follow-set can be computed later */ |
|
lem.nstate = 0; |
|
FindStates(&lem); |
|
lem.sorted = State_arrayof(); |
|
|
|
/* Tie up loose ends on the propagation links */ |
|
FindLinks(&lem); |
|
|
|
/* Compute the follow set of every reducible configuration */ |
|
FindFollowSets(&lem); |
|
|
|
/* Compute the action tables */ |
|
FindActions(&lem); |
|
|
|
/* Compress the action tables */ |
|
if( compress==0 ) CompressTables(&lem); |
|
|
|
/* Generate a report of the parser generated. (the "y.output" file) */ |
|
if( !quiet ) ReportOutput(&lem); |
|
|
|
/* Generate the source code for the parser */ |
|
ReportTable(&lem, mhflag); |
|
|
|
/* Produce a header file for use by the scanner. (This step is |
|
** omitted if the "-m" option is used because makeheaders will |
|
** generate the file for us.) */ |
|
if( !mhflag ) ReportHeader(&lem); |
|
} |
|
if( statistics ){ |
|
printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", |
|
lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); |
|
printf(" %d states, %d parser table entries, %d conflicts\n", |
|
lem.nstate, lem.tablesize, lem.nconflict); |
|
} |
|
if( lem.nconflict ){ |
|
fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); |
|
} |
|
exit(lem.errorcnt + lem.nconflict); |
|
} |
|
/******************** From the file "msort.c" *******************************/ |
|
/* |
|
** A generic merge-sort program. |
|
** |
|
** USAGE: |
|
** Let "ptr" be a pointer to some structure which is at the head of |
|
** a null-terminated list. Then to sort the list call: |
|
** |
|
** ptr = msort(ptr,&(ptr->next),cmpfnc); |
|
** |
|
** In the above, "cmpfnc" is a pointer to a function which compares |
|
** two instances of the structure and returns an integer, as in |
|
** strcmp. The second argument is a pointer to the pointer to the |
|
** second element of the linked list. This address is used to compute |
|
** the offset to the "next" field within the structure. The offset to |
|
** the "next" field must be constant for all structures in the list. |
|
** |
|
** The function returns a new pointer which is the head of the list |
|
** after sorting. |
|
** |
|
** ALGORITHM: |
|
** Merge-sort. |
|
*/ |
|
|
|
/* |
|
** Return a pointer to the next structure in the linked list. |
|
*/ |
|
#define NEXT(A) (*(char**)(((char *)A)+offset)) |
|
|
|
/* |
|
** Inputs: |
|
** a: A sorted, null-terminated linked list. (May be null). |
|
** b: A sorted, null-terminated linked list. (May be null). |
|
** cmp: A pointer to the comparison function. |
|
** offset: Offset in the structure to the "next" field. |
|
** |
|
** Return Value: |
|
** A pointer to the head of a sorted list containing the elements |
|
** of both a and b. |
|
** |
|
** Side effects: |
|
** The "next" pointers for elements in the lists a and b are |
|
** changed. |
|
*/ |
|
static char *merge(char *a, char *b, int (*cmp)(const void *, const void *), |
|
int offset) |
|
{ |
|
char *ptr, *head; |
|
|
|
if( a==0 ){ |
|
head = b; |
|
}else if( b==0 ){ |
|
head = a; |
|
}else{ |
|
if( (*cmp)(a,b)<0 ){ |
|
ptr = a; |
|
a = NEXT(a); |
|
}else{ |
|
ptr = b; |
|
b = NEXT(b); |
|
} |
|
head = ptr; |
|
while( a && b ){ |
|
if( (*cmp)(a,b)<0 ){ |
|
NEXT(ptr) = a; |
|
ptr = a; |
|
a = NEXT(a); |
|
}else{ |
|
NEXT(ptr) = b; |
|
ptr = b; |
|
b = NEXT(b); |
|
} |
|
} |
|
if( a ) NEXT(ptr) = a; |
|
else NEXT(ptr) = b; |
|
} |
|
return head; |
|
} |
|
|
|
/* |
|
** Inputs: |
|
** list: Pointer to a singly-linked list of structures. |
|
** next: Pointer to pointer to the second element of the list. |
|
** cmp: A comparison function. |
|
** |
|
** Return Value: |
|
** A pointer to the head of a sorted list containing the elements |
|
** orginally in list. |
|
** |
|
** Side effects: |
|
** The "next" pointers for elements in list are changed. |
|
*/ |
|
#define LISTSIZE 30 |
|
char *msort(char *list, char **next, int (*cmp)(const void *, const void *)) |
|
{ |
|
int offset; |
|
char *ep; |
|
char *set[LISTSIZE]; |
|
int i; |
|
offset = (char *)next - (char *)list; |
|
for(i=0; i<LISTSIZE; i++) set[i] = 0; |
|
while( list ){ |
|
ep = list; |
|
list = NEXT(list); |
|
NEXT(ep) = 0; |
|
for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ |
|
ep = merge(ep,set[i],cmp,offset); |
|
set[i] = 0; |
|
} |
|
set[i] = ep; |
|
} |
|
ep = 0; |
|
for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset); |
|
return ep; |
|
} |
|
/************************ From the file "option.c" **************************/ |
|
static char **argv; |
|
static struct s_options *op; |
|
static FILE *errstream; |
|
|
|
#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
|
|
|
/* |
|
** Print the command line with a carrot pointing to the k-th character |
|
** of the n-th field. |
|
*/ |
|
static void errline(int n, int k, FILE *err) |
|
{ |
|
int spcnt, i; |
|
spcnt = 0; |
|
if( argv[0] ) fprintf(err,"%s",argv[0]); |
|
spcnt = strlen(argv[0]) + 1; |
|
for(i=1; i<n && argv[i]; i++){ |
|
fprintf(err," %s",argv[i]); |
|
spcnt += strlen(argv[i]+1); |
|
} |
|
spcnt += k; |
|
for(; argv[i]; i++) fprintf(err," %s",argv[i]); |
|
if( spcnt<20 ){ |
|
fprintf(err,"\n%*s^-- here\n",spcnt,""); |
|
}else{ |
|
fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
|
} |
|
} |
|
|
|
/* |
|
** Return the index of the N-th non-switch argument. Return -1 |
|
** if N is out of range. |
|
*/ |
|
static int argindex(int n) |
|
{ |
|
int i; |
|
int dashdash = 0; |
|
if( argv!=0 && *argv!=0 ){ |
|
for(i=1; argv[i]; i++){ |
|
if( dashdash || !ISOPT(argv[i]) ){ |
|
if( n==0 ) return i; |
|
n--; |
|
} |
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
|
} |
|
} |
|
return -1; |
|
} |
|
|
|
static char emsg[] = "Command line syntax error: "; |
|
|
|
/* |
|
** Process a flag command line argument. |
|
*/ |
|
static int handleflags(int i, FILE *err) |
|
{ |
|
int v; |
|
int errcnt = 0; |
|
int j; |
|
for(j=0; op[j].label; j++){ |
|
if( strcmp(&argv[i][1],op[j].label)==0 ) break; |
|
} |
|
v = argv[i][0]=='-' ? 1 : 0; |
|
if( op[j].label==0 ){ |
|
if( err ){ |
|
fprintf(err,"%sundefined option.\n",emsg); |
|
errline(i,1,err); |
|
} |
|
errcnt++; |
|
}else if( op[j].type==OPT_FLAG ){ |
|
*((int*)op[j].arg.val) = v; |
|
}else if( op[j].type==OPT_FFLAG ){ |
|
op[j].arg.fflag(v); |
|
}else{ |
|
if( err ){ |
|
fprintf(err,"%smissing argument on switch.\n",emsg); |
|
errline(i,1,err); |
|
} |
|
errcnt++; |
|
} |
|
return errcnt; |
|
} |
|
|
|
/* |
|
** Process a command line switch which has an argument. |
|
*/ |
|
static int handleswitch(int i, FILE *err) |
|
{ |
|
int lv = 0; |
|
double dv = 0.0; |
|
char *sv = 0, *end; |
|
char *cp; |
|
int j; |
|
int errcnt = 0; |
|
cp = strchr(argv[i],'='); |
|
*cp = 0; |
|
for(j=0; op[j].label; j++){ |
|
if( strcmp(argv[i],op[j].label)==0 ) break; |
|
} |
|
*cp = '='; |
|
if( op[j].label==0 ){ |
|
if( err ){ |
|
fprintf(err,"%sundefined option.\n",emsg); |
|
errline(i,0,err); |
|
} |
|
errcnt++; |
|
}else{ |
|
cp++; |
|
switch( op[j].type ){ |
|
case OPT_FLAG: |
|
case OPT_FFLAG: |
|
if( err ){ |
|
fprintf(err,"%soption requires an argument.\n",emsg); |
|
errline(i,0,err); |
|
} |
|
errcnt++; |
|
break; |
|
case OPT_DBL: |
|
case OPT_FDBL: |
|
dv = strtod(cp,&end); |
|
if( *end ){ |
|
if( err ){ |
|
fprintf(err,"%sillegal character in floating-point argument.\n",emsg); |
|
errline(i,(int)(end-argv[i]),err); |
|
} |
|
errcnt++; |
|
} |
|
break; |
|
case OPT_INT: |
|
case OPT_FINT: |
|
lv = strtol(cp,&end,0); |
|
if( *end ){ |
|
if( err ){ |
|
fprintf(err,"%sillegal character in integer argument.\n",emsg); |
|
errline(i,(int)(end-argv[i]),err); |
|
} |
|
errcnt++; |
|
} |
|
break; |
|
case OPT_STR: |
|
case OPT_FSTR: |
|
sv = cp; |
|
break; |
|
} |
|
switch( op[j].type ){ |
|
case OPT_FLAG: |
|
case OPT_FFLAG: |
|
break; |
|
case OPT_DBL: |
|
*(double*)(op[j].arg.val) = dv; |
|
break; |
|
case OPT_FDBL: |
|
op[j].arg.fdbl(dv); |
|
break; |
|
case OPT_INT: |
|
*(int*)(op[j].arg.val) = lv; |
|
break; |
|
case OPT_FINT: |
|
op[j].arg.fint(lv); |
|
break; |
|
case OPT_STR: |
|
*(char**)(op[j].arg.val) = sv; |
|
break; |
|
case OPT_FSTR: |
|
op[j].arg.fstr(sv); |
|
break; |
|
} |
|
} |
|
return errcnt; |
|
} |
|
|
|
int OptInit(char **a, struct s_options *o, FILE *err) |
|
{ |
|
int errcnt = 0; |
|
argv = a; |
|
op = o; |
|
errstream = err; |
|
if( argv && *argv && op ){ |
|
int i; |
|
for(i=1; argv[i]; i++){ |
|
if( argv[i][0]=='+' || argv[i][0]=='-' ){ |
|
errcnt += handleflags(i,err); |
|
}else if( strchr(argv[i],'=') ){ |
|
errcnt += handleswitch(i,err); |
|
} |
|
} |
|
} |
|
if( errcnt>0 ){ |
|
fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
|
OptPrint(); |
|
exit(1); |
|
} |
|
return 0; |
|
} |
|
|
|
int OptNArgs(void){ |
|
int cnt = 0; |
|
int dashdash = 0; |
|
int i; |
|
if( argv!=0 && argv[0]!=0 ){ |
|
for(i=1; argv[i]; i++){ |
|
if( dashdash || !ISOPT(argv[i]) ) cnt++; |
|
if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
|
} |
|
} |
|
return cnt; |
|
} |
|
|
|
char *OptArg(int n) |
|
{ |
|
int i; |
|
i = argindex(n); |
|
return i>=0 ? argv[i] : 0; |
|
} |
|
|
|
void OptErr(int n) |
|
{ |
|
int i; |
|
i = argindex(n); |
|
if( i>=0 ) errline(i,0,errstream); |
|
} |
|
|
|
void OptPrint(void){ |
|
int i; |
|
int max, len; |
|
max = 0; |
|
for(i=0; op[i].label; i++){ |
|
len = strlen(op[i].label) + 1; |
|
switch( op[i].type ){ |
|
case OPT_FLAG: |
|
case OPT_FFLAG: |
|
break; |
|
case OPT_INT: |
|
case OPT_FINT: |
|
len += 9; /* length of "<integer>" */ |
|
break; |
|
case OPT_DBL: |
|
case OPT_FDBL: |
|
len += 6; /* length of "<real>" */ |
|
break; |
|
case OPT_STR: |
|
case OPT_FSTR: |
|
len += 8; /* length of "<string>" */ |
|
break; |
|
} |
|
if( len>max ) max = len; |
|
} |
|
for(i=0; op[i].label; i++){ |
|
switch( op[i].type ){ |
|
case OPT_FLAG: |
|
case OPT_FFLAG: |
|
fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
|
break; |
|
case OPT_INT: |
|
case OPT_FINT: |
|
fprintf(errstream," %s=<integer>%*s %s\n",op[i].label, |
|
(int)(max-strlen(op[i].label)-9),"",op[i].message); |
|
break; |
|
case OPT_DBL: |
|
case OPT_FDBL: |
|
fprintf(errstream," %s=<real>%*s %s\n",op[i].label, |
|
(int)(max-strlen(op[i].label)-6),"",op[i].message); |
|
break; |
|
case OPT_STR: |
|
case OPT_FSTR: |
|
fprintf(errstream," %s=<string>%*s %s\n",op[i].label, |
|
(int)(max-strlen(op[i].label)-8),"",op[i].message); |
|
break; |
|
} |
|
} |
|
} |
|
/*********************** From the file "parse.c" ****************************/ |
|
/* |
|
** Input file parser for the LEMON parser generator. |
|
*/ |
|
|
|
/* The state of the parser */ |
|
struct pstate { |
|
char *filename; /* Name of the input file */ |
|
int tokenlineno; /* Linenumber at which current token starts */ |
|
int errorcnt; /* Number of errors so far */ |
|
char *tokenstart; /* Text of current token */ |
|
struct lemon *gp; /* Global state vector */ |
|
enum e_state { |
|
INITIALIZE, |
|
WAITING_FOR_DECL_OR_RULE, |
|
WAITING_FOR_DECL_KEYWORD, |
|
WAITING_FOR_DECL_ARG, |
|
WAITING_FOR_PRECEDENCE_SYMBOL, |
|
WAITING_FOR_ARROW, |
|
IN_RHS, |
|
LHS_ALIAS_1, |
|
LHS_ALIAS_2, |
|
LHS_ALIAS_3, |
|
RHS_ALIAS_1, |
|
RHS_ALIAS_2, |
|
PRECEDENCE_MARK_1, |
|
PRECEDENCE_MARK_2, |
|
RESYNC_AFTER_RULE_ERROR, |
|
RESYNC_AFTER_DECL_ERROR, |
|
WAITING_FOR_DESTRUCTOR_SYMBOL, |
|
WAITING_FOR_DATATYPE_SYMBOL |
|
} state; /* The state of the parser */ |
|
struct symbol *lhs; /* Left-hand side of current rule */ |
|
char *lhsalias; /* Alias for the LHS */ |
|
int nrhs; /* Number of right-hand side symbols seen */ |
|
struct symbol *rhs[MAXRHS]; /* RHS symbols */ |
|
char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ |
|
struct rule *prevrule; /* Previous rule parsed */ |
|
char *declkeyword; /* Keyword of a declaration */ |
|
char **declargslot; /* Where the declaration argument should be put */ |
|
int *decllnslot; /* Where the declaration linenumber is put */ |
|
enum e_assoc declassoc; /* Assign this association to decl arguments */ |
|
int preccounter; /* Assign this precedence to decl arguments */ |
|
struct rule *firstrule; /* Pointer to first rule in the grammar */ |
|
struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
|
}; |
|
|
|
/* Parse a single token */ |
|
static void parseonetoken(struct pstate *psp) |
|
{ |
|
char *x; |
|
x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
|
#if 0 |
|
printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
|
x,psp->state); |
|
#endif |
|
switch( psp->state ){ |
|
case INITIALIZE: |
|
psp->prevrule = 0; |
|
psp->preccounter = 0; |
|
psp->firstrule = psp->lastrule = 0; |
|
psp->gp->nrule = 0; |
|
/* Fall thru to next case */ |
|
case WAITING_FOR_DECL_OR_RULE: |
|
if( x[0]=='%' ){ |
|
psp->state = WAITING_FOR_DECL_KEYWORD; |
|
}else if( safe_islower(x[0]) ){ |
|
psp->lhs = Symbol_new(x); |
|
psp->nrhs = 0; |
|
psp->lhsalias = 0; |
|
psp->state = WAITING_FOR_ARROW; |
|
}else if( x[0]=='{' ){ |
|
if( psp->prevrule==0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"There is not prior rule opon which to attach the code \ |
|
fragment which begins on this line."); |
|
psp->errorcnt++; |
|
}else if( psp->prevrule->code!=0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Code fragment beginning on this line is not the first \ |
|
to follow the previous rule."); |
|
psp->errorcnt++; |
|
}else{ |
|
psp->prevrule->line = psp->tokenlineno; |
|
psp->prevrule->code = &x[1]; |
|
} |
|
}else if( x[0]=='[' ){ |
|
psp->state = PRECEDENCE_MARK_1; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Token \"%s\" should be either \"%%\" or a nonterminal name.", |
|
x); |
|
psp->errorcnt++; |
|
} |
|
break; |
|
case PRECEDENCE_MARK_1: |
|
if( !safe_isupper(x[0]) ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"The precedence symbol must be a terminal."); |
|
psp->errorcnt++; |
|
}else if( psp->prevrule==0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"There is no prior rule to assign precedence \"[%s]\".",x); |
|
psp->errorcnt++; |
|
}else if( psp->prevrule->precsym!=0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Precedence mark on this line is not the first \ |
|
to follow the previous rule."); |
|
psp->errorcnt++; |
|
}else{ |
|
psp->prevrule->precsym = Symbol_new(x); |
|
} |
|
psp->state = PRECEDENCE_MARK_2; |
|
break; |
|
case PRECEDENCE_MARK_2: |
|
if( x[0]!=']' ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Missing \"]\" on precedence mark."); |
|
psp->errorcnt++; |
|
} |
|
psp->state = WAITING_FOR_DECL_OR_RULE; |
|
break; |
|
case WAITING_FOR_ARROW: |
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
|
psp->state = IN_RHS; |
|
}else if( x[0]=='(' ){ |
|
psp->state = LHS_ALIAS_1; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Expected to see a \":\" following the LHS symbol \"%s\".", |
|
psp->lhs->name); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case LHS_ALIAS_1: |
|
if( safe_isalpha(x[0]) ){ |
|
psp->lhsalias = x; |
|
psp->state = LHS_ALIAS_2; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"\"%s\" is not a valid alias for the LHS \"%s\"\n", |
|
x,psp->lhs->name); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case LHS_ALIAS_2: |
|
if( x[0]==')' ){ |
|
psp->state = LHS_ALIAS_3; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case LHS_ALIAS_3: |
|
if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
|
psp->state = IN_RHS; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Missing \"->\" following: \"%s(%s)\".", |
|
psp->lhs->name,psp->lhsalias); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case IN_RHS: |
|
if( x[0]=='.' ){ |
|
struct rule *rp; |
|
rp = (struct rule *)malloc( sizeof(struct rule) + |
|
sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs ); |
|
if( rp==0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Can't allocate enough memory for this rule."); |
|
psp->errorcnt++; |
|
psp->prevrule = 0; |
|
}else{ |
|
int i; |
|
rp->ruleline = psp->tokenlineno; |
|
rp->rhs = (struct symbol**)&rp[1]; |
|
rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]); |
|
for(i=0; i<psp->nrhs; i++){ |
|
rp->rhs[i] = psp->rhs[i]; |
|
rp->rhsalias[i] = psp->alias[i]; |
|
} |
|
rp->lhs = psp->lhs; |
|
rp->lhsalias = psp->lhsalias; |
|
rp->nrhs = psp->nrhs; |
|
rp->code = 0; |
|
rp->precsym = 0; |
|
rp->index = psp->gp->nrule++; |
|
rp->nextlhs = rp->lhs->rule; |
|
rp->lhs->rule = rp; |
|
rp->next = 0; |
|
if( psp->firstrule==0 ){ |
|
psp->firstrule = psp->lastrule = rp; |
|
}else{ |
|
psp->lastrule->next = rp; |
|
psp->lastrule = rp; |
|
} |
|
psp->prevrule = rp; |
|
} |
|
psp->state = WAITING_FOR_DECL_OR_RULE; |
|
}else if( safe_isalpha(x[0]) ){ |
|
if( psp->nrhs>=MAXRHS ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Too many symbol on RHS or rule beginning at \"%s\".", |
|
x); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
}else{ |
|
psp->rhs[psp->nrhs] = Symbol_new(x); |
|
psp->alias[psp->nrhs] = 0; |
|
psp->nrhs++; |
|
} |
|
}else if( x[0]=='(' && psp->nrhs>0 ){ |
|
psp->state = RHS_ALIAS_1; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Illegal character on RHS of rule: \"%s\".",x); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case RHS_ALIAS_1: |
|
if( safe_isalpha(x[0]) ){ |
|
psp->alias[psp->nrhs-1] = x; |
|
psp->state = RHS_ALIAS_2; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
|
x,psp->rhs[psp->nrhs-1]->name); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case RHS_ALIAS_2: |
|
if( x[0]==')' ){ |
|
psp->state = IN_RHS; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_RULE_ERROR; |
|
} |
|
break; |
|
case WAITING_FOR_DECL_KEYWORD: |
|
if( safe_isalpha(x[0]) ){ |
|
psp->declkeyword = x; |
|
psp->declargslot = 0; |
|
psp->decllnslot = 0; |
|
psp->state = WAITING_FOR_DECL_ARG; |
|
if( strcmp(x,"name")==0 ){ |
|
psp->declargslot = &(psp->gp->name); |
|
}else if( strcmp(x,"include")==0 ){ |
|
psp->declargslot = &(psp->gp->include); |
|
psp->decllnslot = &psp->gp->includeln; |
|
}else if( strcmp(x,"code")==0 ){ |
|
psp->declargslot = &(psp->gp->extracode); |
|
psp->decllnslot = &psp->gp->extracodeln; |
|
}else if( strcmp(x,"token_destructor")==0 ){ |
|
psp->declargslot = &psp->gp->tokendest; |
|
psp->decllnslot = &psp->gp->tokendestln; |
|
}else if( strcmp(x,"token_prefix")==0 ){ |
|
psp->declargslot = &psp->gp->tokenprefix; |
|
}else if( strcmp(x,"syntax_error")==0 ){ |
|
psp->declargslot = &(psp->gp->error); |
|
psp->decllnslot = &psp->gp->errorln; |
|
}else if( strcmp(x,"parse_accept")==0 ){ |
|
psp->declargslot = &(psp->gp->accept); |
|
psp->decllnslot = &psp->gp->acceptln; |
|
}else if( strcmp(x,"parse_failure")==0 ){ |
|
psp->declargslot = &(psp->gp->failure); |
|
psp->decllnslot = &psp->gp->failureln; |
|
}else if( strcmp(x,"stack_overflow")==0 ){ |
|
psp->declargslot = &(psp->gp->overflow); |
|
psp->decllnslot = &psp->gp->overflowln; |
|
}else if( strcmp(x,"extra_argument")==0 ){ |
|
psp->declargslot = &(psp->gp->arg); |
|
}else if( strcmp(x,"token_type")==0 ){ |
|
psp->declargslot = &(psp->gp->tokentype); |
|
}else if( strcmp(x,"stack_size")==0 ){ |
|
psp->declargslot = &(psp->gp->stacksize); |
|
}else if( strcmp(x,"start_symbol")==0 ){ |
|
psp->declargslot = &(psp->gp->start); |
|
}else if( strcmp(x,"left")==0 ){ |
|
psp->preccounter++; |
|
psp->declassoc = LEFT; |
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
|
}else if( strcmp(x,"right")==0 ){ |
|
psp->preccounter++; |
|
psp->declassoc = RIGHT; |
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
|
}else if( strcmp(x,"nonassoc")==0 ){ |
|
psp->preccounter++; |
|
psp->declassoc = NONE; |
|
psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
|
}else if( strcmp(x,"destructor")==0 ){ |
|
psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
|
}else if( strcmp(x,"type")==0 ){ |
|
psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Unknown declaration keyword: \"%%%s\".",x); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
} |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Illegal declaration keyword: \"%s\".",x); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
} |
|
break; |
|
case WAITING_FOR_DESTRUCTOR_SYMBOL: |
|
if( !safe_isalpha(x[0]) ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Symbol name missing after %%destructor keyword"); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
}else{ |
|
struct symbol *sp = Symbol_new(x); |
|
psp->declargslot = &sp->destructor; |
|
psp->decllnslot = &sp->destructorln; |
|
psp->state = WAITING_FOR_DECL_ARG; |
|
} |
|
break; |
|
case WAITING_FOR_DATATYPE_SYMBOL: |
|
if( !safe_isalpha(x[0]) ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Symbol name missing after %%destructor keyword"); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
}else{ |
|
struct symbol *sp = Symbol_new(x); |
|
psp->declargslot = &sp->datatype; |
|
psp->decllnslot = 0; |
|
psp->state = WAITING_FOR_DECL_ARG; |
|
} |
|
break; |
|
case WAITING_FOR_PRECEDENCE_SYMBOL: |
|
if( x[0]=='.' ){ |
|
psp->state = WAITING_FOR_DECL_OR_RULE; |
|
}else if( safe_isupper(x[0]) ){ |
|
struct symbol *sp; |
|
sp = Symbol_new(x); |
|
if( sp->prec>=0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Symbol \"%s\" has already be given a precedence.",x); |
|
psp->errorcnt++; |
|
}else{ |
|
sp->prec = psp->preccounter; |
|
sp->assoc = psp->declassoc; |
|
} |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Can't assign a precedence to \"%s\".",x); |
|
psp->errorcnt++; |
|
} |
|
break; |
|
case WAITING_FOR_DECL_ARG: |
|
if( (x[0]=='{' || x[0]=='\"' || safe_isalnum(x[0])) ){ |
|
if( *(psp->declargslot)!=0 ){ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"The argument \"%s\" to declaration \"%%%s\" is not the first.", |
|
x[0]=='\"' ? &x[1] : x,psp->declkeyword); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
}else{ |
|
*(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x; |
|
if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno; |
|
psp->state = WAITING_FOR_DECL_OR_RULE; |
|
} |
|
}else{ |
|
ErrorMsg(psp->filename,psp->tokenlineno, |
|
"Illegal argument to %%%s: %s",psp->declkeyword,x); |
|
psp->errorcnt++; |
|
psp->state = RESYNC_AFTER_DECL_ERROR; |
|
} |
|
break; |
|
case RESYNC_AFTER_RULE_ERROR: |
|
/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
|
** break; */ |
|
case RESYNC_AFTER_DECL_ERROR: |
|
if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
|
if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
|
break; |
|
} |
|
} |
|
|
|
/* In spite of its name, this function is really a scanner. It read |
|
** in the entire input file (all at once) then tokenizes it. Each |
|
** token is passed to the function "parseonetoken" which builds all |
|
** the appropriate data structures in the global state vector "gp". |
|
*/ |
|
void Parse(struct lemon *gp) |
|
{ |
|
struct pstate ps; |
|
FILE *fp; |
|
char *filebuf; |
|
long filesize; |
|
int lineno; |
|
char c; |
|
char *cp, *nextcp; |
|
int startline = 0; |
|
|
|
ps.gp = gp; |
|
ps.filename = gp->filename; |
|
ps.errorcnt = 0; |
|
ps.state = INITIALIZE; |
|
|
|
/* Begin by reading the input file */ |
|
fp = fopen(ps.filename,"rb"); |
|
if( fp==0 ){ |
|
ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
|
gp->errorcnt++; |
|
return; |
|
} |
|
fseek(fp,0,2); |
|
filesize = ftell(fp); |
|
rewind(fp); |
|
/* XXX - what if filesize is bigger than the maximum size_t value? */ |
|
filebuf = (char *)malloc( filesize+1 ); |
|
if( filebuf==0 ){ |
|
ErrorMsg(ps.filename,0,"Can't allocate %ld of memory to hold this file.", |
|
filesize+1); |
|
gp->errorcnt++; |
|
return; |
|
} |
|
if( fread(filebuf,1,filesize,fp)!=(size_t)filesize ){ |
|
ErrorMsg(ps.filename,0,"Can't read in all %ld bytes of this file.", |
|
filesize); |
|
free(filebuf); |
|
gp->errorcnt++; |
|
return; |
|
} |
|
fclose(fp); |
|
filebuf[filesize] = 0; |
|
|
|
/* Now scan the text of the input file */ |
|
lineno = 1; |
|
for(cp=filebuf; (c= *cp)!=0; ){ |
|
if( c=='\n' ) lineno++; /* Keep track of the line number */ |
|
if( safe_isspace(c) ){ cp++; continue; } /* Skip all white space */ |
|
if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
|
cp+=2; |
|
while( (c= *cp)!=0 && c!='\n' ) cp++; |
|
continue; |
|
} |
|
if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
|
cp+=2; |
|
while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
|
if( c=='\n' ) lineno++; |
|
cp++; |
|
} |
|
if( c ) cp++; |
|
continue; |
|
} |
|
ps.tokenstart = cp; /* Mark the beginning of the token */ |
|
ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
|
if( c=='\"' ){ /* String literals */ |
|
cp++; |
|
while( (c= *cp)!=0 && c!='\"' ){ |
|
if( c=='\n' ) lineno++; |
|
cp++; |
|
} |
|
if( c==0 ){ |
|
ErrorMsg(ps.filename,startline, |
|
"String starting on this line is not terminated before the end of the file."); |
|
ps.errorcnt++; |
|
nextcp = cp; |
|
}else{ |
|
nextcp = cp+1; |
|
} |
|
}else if( c=='{' ){ /* A block of C code */ |
|
int level; |
|
cp++; |
|
for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
|
if( c=='\n' ) lineno++; |
|
else if( c=='{' ) level++; |
|
else if( c=='}' ) level--; |
|
else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
|
char prevc; |
|
cp = &cp[2]; |
|
prevc = 0; |
|
while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
|
if( c=='\n' ) lineno++; |
|
prevc = c; |
|
cp++; |
|
} |
|
}else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
|
cp = &cp[2]; |
|
while( (c= *cp)!=0 && c!='\n' ) cp++; |
|
if( c ) lineno++; |
|
}else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
|
char startchar, prevc; |
|
startchar = c; |
|
prevc = 0; |
|
for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
|
if( c=='\n' ) lineno++; |
|
if( prevc=='\\' ) prevc = 0; |
|
else prevc = c; |
|
} |
|
} |
|
} |
|
if( c==0 ){ |
|
ErrorMsg(ps.filename,ps.tokenlineno, |
|
"C code starting on this line is not terminated before the end of the file."); |
|
ps.errorcnt++; |
|
nextcp = cp; |
|
}else{ |
|
nextcp = cp+1; |
|
} |
|
}else if( safe_isalnum(c) ){ /* Identifiers */ |
|
while( (c= *cp)!=0 && (safe_isalnum(c) || c=='_') ) cp++; |
|
nextcp = cp; |
|
}else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
|
cp += 3; |
|
nextcp = cp; |
|
}else{ /* All other (one character) operators */ |
|
cp++; |
|
nextcp = cp; |
|
} |
|
c = *cp; |
|
*cp = 0; /* Null terminate the token */ |
|
parseonetoken(&ps); /* Parse the token */ |
|
*cp = c; /* Restore the buffer */ |
|
cp = nextcp; |
|
} |
|
free(filebuf); /* Release the buffer after parsing */ |
|
gp->rule = ps.firstrule; |
|
gp->errorcnt = ps.errorcnt; |
|
} |
|
/*************************** From the file "plink.c" *********************/ |
|
/* |
|
** Routines processing configuration follow-set propagation links |
|
** in the LEMON parser generator. |
|
*/ |
|
static struct plink *plink_freelist = 0; |
|
|
|
/* Allocate a new plink */ |
|
struct plink *Plink_new(void){ |
|
struct plink *new; |
|
|
|
if( plink_freelist==0 ){ |
|
int i; |
|
int amt = 100; |
|
plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt ); |
|
if( plink_freelist==0 ){ |
|
fprintf(stderr, |
|
"Unable to allocate memory for a new follow-set propagation link.\n"); |
|
exit(1); |
|
} |
|
for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
|
plink_freelist[amt-1].next = 0; |
|
} |
|
new = plink_freelist; |
|
plink_freelist = plink_freelist->next; |
|
return new; |
|
} |
|
|
|
/* Add a plink to a plink list */ |
|
void Plink_add(struct plink **plpp, struct config *cfp) |
|
{ |
|
struct plink *new; |
|
new = Plink_new(); |
|
new->next = *plpp; |
|
*plpp = new; |
|
new->cfp = cfp; |
|
} |
|
|
|
/* Transfer every plink on the list "from" to the list "to" */ |
|
void Plink_copy(struct plink **to, struct plink *from) |
|
{ |
|
struct plink *nextpl; |
|
while( from ){ |
|
nextpl = from->next; |
|
from->next = *to; |
|
*to = from; |
|
from = nextpl; |
|
} |
|
} |
|
|
|
/* Delete every plink on the list */ |
|
void Plink_delete(struct plink *plp) |
|
{ |
|
struct plink *nextpl; |
|
|
|
while( plp ){ |
|
nextpl = plp->next; |
|
plp->next = plink_freelist; |
|
plink_freelist = plp; |
|
plp = nextpl; |
|
} |
|
} |
|
|
|
/*********************** From the file "report.c" **************************/ |
|
/* |
|
** Procedures for generating reports and tables in the LEMON parser generator. |
|
*/ |
|
|
|
PRIVATE char *file_makename(struct lemon *, const char *); |
|
PRIVATE FILE *file_open(struct lemon *, const char *, const char *); |
|
void ConfigPrint(FILE *, struct config *); |
|
int PrintAction(struct action *, FILE *, int); |
|
PRIVATE const char *pathsearch(void); |
|
PRIVATE int compute_action(struct lemon *, struct action *); |
|
PRIVATE void tplt_xfer(char *, FILE *, FILE *, int *); |
|
PRIVATE FILE *tplt_open(struct lemon *); |
|
PRIVATE void tplt_print(FILE *, struct lemon *, char *, int, int *); |
|
void emit_destructor_code(FILE *, struct symbol *, struct lemon *, int *); |
|
int has_destructor(struct symbol *, struct lemon *); |
|
PRIVATE void emit_code(FILE *, struct rule *, struct lemon *, int *); |
|
void print_stack_union(FILE *, struct lemon *, int *, int); |
|
|
|
/* Generate a filename with the given suffix. Space to hold the |
|
** name comes from malloc() and must be freed by the calling |
|
** function. |
|
*/ |
|
PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
|
{ |
|
char *name = NULL; |
|
char *cp, *fname; |
|
|
|
fname = output_file ? output_file : lemp->filename; |
|
name = malloc( strlen(fname) + strlen(suffix)); |
|
if( name==0 ){ |
|
fprintf(stderr,"Can't allocate space for a filename.\n"); |
|
exit(1); |
|
} |
|
strcpy(name, fname); |
|
cp = strrchr(name,'.'); |
|
if( cp ) *cp = 0; |
|
strcat(name,suffix); |
|
return name; |
|
} |
|
|
|
/* Open a file with a name based on the name of the input file, |
|
** but with a different (specified) suffix, and return a pointer |
|
** to the stream */ |
|
PRIVATE FILE *file_open(struct lemon *lemp, const char *suffix, |
|
const char *mode) |
|
{ |
|
FILE *fp; |
|
|
|
if( lemp->outname ) free(lemp->outname); |
|
lemp->outname = file_makename(lemp, suffix); |
|
fp = fopen(lemp->outname,mode); |
|
if( fp==0 && *mode=='w' ){ |
|
fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); |
|
lemp->errorcnt++; |
|
return 0; |
|
} |
|
return fp; |
|
} |
|
|
|
/* Duplicate the input file without comments and without actions |
|
** on rules */ |
|
void Reprint(struct lemon *lemp) |
|
{ |
|
struct rule *rp; |
|
struct symbol *sp; |
|
int i, j, maxlen, len, ncolumns, skip; |
|
printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
|
maxlen = 10; |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
sp = lemp->symbols[i]; |
|
len = strlen(sp->name); |
|
if( len>maxlen ) maxlen = len; |
|
} |
|
ncolumns = 76/(maxlen+5); |
|
if( ncolumns<1 ) ncolumns = 1; |
|
skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
|
for(i=0; i<skip; i++){ |
|
printf("//"); |
|
for(j=i; j<lemp->nsymbol; j+=skip){ |
|
sp = lemp->symbols[j]; |
|
assert( sp->index==j ); |
|
printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
|
} |
|
printf("\n"); |
|
} |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
printf("%s",rp->lhs->name); |
|
/* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ |
|
printf(" ::="); |
|
for(i=0; i<rp->nrhs; i++){ |
|
printf(" %s",rp->rhs[i]->name); |
|
/* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ |
|
} |
|
printf("."); |
|
if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
|
/* if( rp->code ) printf("\n %s",rp->code); */ |
|
printf("\n"); |
|
} |
|
} |
|
|
|
void ConfigPrint(FILE *fp, struct config *cfp) |
|
{ |
|
struct rule *rp; |
|
int i; |
|
rp = cfp->rp; |
|
fprintf(fp,"%s ::=",rp->lhs->name); |
|
for(i=0; i<=rp->nrhs; i++){ |
|
if( i==cfp->dot ) fprintf(fp," *"); |
|
if( i==rp->nrhs ) break; |
|
fprintf(fp," %s",rp->rhs[i]->name); |
|
} |
|
} |
|
|
|
/* #define TEST */ |
|
#ifdef TEST |
|
/* Print a set */ |
|
PRIVATE void SetPrint(FILE *out, char *set, struct lemon *lemp) |
|
{ |
|
int i; |
|
char *spacer; |
|
spacer = ""; |
|
fprintf(out,"%12s[",""); |
|
for(i=0; i<lemp->nterminal; i++){ |
|
if( SetFind(set,i) ){ |
|
fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
|
spacer = " "; |
|
} |
|
} |
|
fprintf(out,"]\n"); |
|
} |
|
|
|
/* Print a plink chain */ |
|
PRIVATE void PlinkPrint(FILE *out, struct plink *plp, char *tag) |
|
{ |
|
while( plp ){ |
|
fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index); |
|
ConfigPrint(out,plp->cfp); |
|
fprintf(out,"\n"); |
|
plp = plp->next; |
|
} |
|
} |
|
#endif |
|
|
|
/* Print an action to the given file descriptor. Return FALSE if |
|
** nothing was actually printed. |
|
*/ |
|
int PrintAction(struct action *ap, FILE *fp, int indent){ |
|
int result = 1; |
|
switch( ap->type ){ |
|
case SHIFT: |
|
fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->index); |
|
break; |
|
case REDUCE: |
|
fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); |
|
break; |
|
case ACCEPT: |
|
fprintf(fp,"%*s accept",indent,ap->sp->name); |
|
break; |
|
case ERROR: |
|
fprintf(fp,"%*s error",indent,ap->sp->name); |
|
break; |
|
case CONFLICT: |
|
fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", |
|
indent,ap->sp->name,ap->x.rp->index); |
|
break; |
|
case SH_RESOLVED: |
|
case RD_RESOLVED: |
|
case NOT_USED: |
|
result = 0; |
|
break; |
|
} |
|
return result; |
|
} |
|
|
|
/* Generate the "y.output" log file */ |
|
void ReportOutput(struct lemon *lemp) |
|
{ |
|
int i; |
|
struct state *stp; |
|
struct config *cfp; |
|
struct action *ap; |
|
FILE *fp; |
|
|
|
fp = file_open(lemp,".out","w"); |
|
if( fp==0 ) return; |
|
fprintf(fp," \b"); |
|
for(i=0; i<lemp->nstate; i++){ |
|
stp = lemp->sorted[i]; |
|
fprintf(fp,"State %d:\n",stp->index); |
|
if( lemp->basisflag ) cfp=stp->bp; |
|
else cfp=stp->cfp; |
|
while( cfp ){ |
|
char buf[20]; |
|
if( cfp->dot==cfp->rp->nrhs ){ |
|
sprintf(buf,"(%d)",cfp->rp->index); |
|
fprintf(fp," %5s ",buf); |
|
}else{ |
|
fprintf(fp," "); |
|
} |
|
ConfigPrint(fp,cfp); |
|
fprintf(fp,"\n"); |
|
#ifdef TEST |
|
SetPrint(fp,cfp->fws,lemp); |
|
PlinkPrint(fp,cfp->fplp,"To "); |
|
PlinkPrint(fp,cfp->bplp,"From"); |
|
#endif |
|
if( lemp->basisflag ) cfp=cfp->bp; |
|
else cfp=cfp->next; |
|
} |
|
fprintf(fp,"\n"); |
|
for(ap=stp->ap; ap; ap=ap->next){ |
|
if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
|
} |
|
fprintf(fp,"\n"); |
|
} |
|
fclose(fp); |
|
return; |
|
} |
|
|
|
PRIVATE const char *pathsearch(void) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < sizeof(lempar_locations)/sizeof(char *); i++) |
|
if (lempar_locations[i] && access(lempar_locations[i], 004) == 0) |
|
return lempar_locations[i]; |
|
|
|
return(NULL); |
|
} |
|
|
|
/* Given an action, compute the integer value for that action |
|
** which is to be put in the action table of the generated machine. |
|
** Return negative if no action should be generated. |
|
*/ |
|
PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
|
{ |
|
int act; |
|
switch( ap->type ){ |
|
case SHIFT: act = ap->x.stp->index; break; |
|
case REDUCE: act = ap->x.rp->index + lemp->nstate; break; |
|
case ERROR: act = lemp->nstate + lemp->nrule; break; |
|
case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; |
|
default: act = -1; break; |
|
} |
|
return act; |
|
} |
|
|
|
#define LINESIZE 1000 |
|
/* The next cluster of routines are for reading the template file |
|
** and writing the results to the generated parser */ |
|
/* The first function transfers data from "in" to "out" until |
|
** a line is seen which begins with "%%". The line number is |
|
** tracked. |
|
** |
|
** if name!=0, then any word that begin with "Parse" is changed to |
|
** begin with *name instead. |
|
*/ |
|
PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
|
{ |
|
int i, iStart; |
|
char line[LINESIZE]; |
|
while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ |
|
(*lineno)++; |
|
iStart = 0; |
|
if( name ){ |
|
for(i=0; line[i]; i++){ |
|
if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
|
&& (i==0 || !safe_isalpha(line[i-1])) |
|
){ |
|
if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
|
fprintf(out,"%s",name); |
|
i += 4; |
|
iStart = i+1; |
|
} |
|
} |
|
} |
|
fprintf(out,"%s",&line[iStart]); |
|
} |
|
} |
|
|
|
/* The next function finds the template file and opens it, returning |
|
** a pointer to the opened file. */ |
|
PRIVATE FILE *tplt_open(struct lemon *lemp) |
|
{ |
|
char buf[1000]; |
|
FILE *in; |
|
const char *tpltname; |
|
char *cp; |
|
|
|
cp = strrchr(lemp->filename,'.'); |
|
if( cp ){ |
|
sprintf(buf,"%.*s.lt",(int)cp-(int)lemp->filename,lemp->filename); |
|
}else{ |
|
sprintf(buf,"%s.lt",lemp->filename); |
|
} |
|
if( access(buf,004)==0 ){ |
|
tpltname = buf; |
|
}else{ |
|
tpltname = pathsearch(); |
|
} |
|
if( tpltname==0 ){ |
|
fprintf(stderr,"Can't find the parser driver template file.\n"); |
|
lemp->errorcnt++; |
|
return 0; |
|
} |
|
in = fopen(tpltname,"r"); |
|
if( in==0 ){ |
|
fprintf(stderr,"Can't open the template file \"%s\".\n", tpltname); |
|
lemp->errorcnt++; |
|
return 0; |
|
} |
|
return in; |
|
} |
|
|
|
/* Print a string to the file and keep the linenumber up to date */ |
|
PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, |
|
int strln, int *lineno) |
|
{ |
|
if( str==0 ) return; |
|
fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++; |
|
while( *str ){ |
|
if( *str=='\n' ) (*lineno)++; |
|
putc(*str,out); |
|
str++; |
|
} |
|
fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2; |
|
return; |
|
} |
|
|
|
/* |
|
** The following routine emits code for the destructor for the |
|
** symbol sp |
|
*/ |
|
void emit_destructor_code(FILE *out, struct symbol *sp, struct lemon *lemp, |
|
int *lineno) |
|
{ |
|
char *cp; |
|
|
|
int linecnt = 0; |
|
if( sp->type==TERMINAL ){ |
|
cp = lemp->tokendest; |
|
if( cp==0 ) return; |
|
fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename); |
|
}else{ |
|
cp = sp->destructor; |
|
if( cp==0 ) return; |
|
fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename); |
|
} |
|
for(; *cp; cp++){ |
|
if( *cp=='$' && cp[1]=='$' ){ |
|
fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
|
cp++; |
|
continue; |
|
} |
|
if( *cp=='\n' ) linecnt++; |
|
fputc(*cp,out); |
|
} |
|
(*lineno) += 3 + linecnt; |
|
fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname); |
|
return; |
|
} |
|
|
|
/* |
|
** Return TRUE (non-zero) if the given symbol has a distructor. |
|
*/ |
|
int has_destructor(struct symbol *sp, struct lemon *lemp) |
|
{ |
|
int ret; |
|
if( sp->type==TERMINAL ){ |
|
ret = lemp->tokendest!=0; |
|
}else{ |
|
ret = sp->destructor!=0; |
|
} |
|
return ret; |
|
} |
|
|
|
/* |
|
** Generate code which executes when the rule "rp" is reduced. Write |
|
** the code to "out". Make sure lineno stays up-to-date. |
|
*/ |
|
PRIVATE void emit_code(FILE *out, struct rule *rp, struct lemon *lemp, |
|
int *lineno) |
|
{ |
|
char *cp, *xp; |
|
int linecnt = 0; |
|
int i; |
|
char lhsused = 0; /* True if the LHS element has been used */ |
|
char used[MAXRHS]; /* True for each RHS element which is used */ |
|
|
|
for(i=0; i<rp->nrhs; i++) used[i] = 0; |
|
lhsused = 0; |
|
|
|
/* Generate code to do the reduce action */ |
|
if( rp->code ){ |
|
fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename); |
|
for(cp=rp->code; *cp; cp++){ |
|
if( safe_isalpha(*cp) && (cp==rp->code || !safe_isalnum(cp[-1])) ){ |
|
char saved; |
|
for(xp= &cp[1]; safe_isalnum(*xp); xp++); |
|
saved = *xp; |
|
*xp = 0; |
|
if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
|
fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum); |
|
cp = xp; |
|
lhsused = 1; |
|
}else{ |
|
for(i=0; i<rp->nrhs; i++){ |
|
if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
|
fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum); |
|
cp = xp; |
|
used[i] = 1; |
|
break; |
|
} |
|
} |
|
} |
|
*xp = saved; |
|
} |
|
if( *cp=='\n' ) linecnt++; |
|
fputc(*cp,out); |
|
} /* End loop */ |
|
(*lineno) += 3 + linecnt; |
|
fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname); |
|
} /* End if( rp->code ) */ |
|
|
|
/* Check to make sure the LHS has been used */ |
|
if( rp->lhsalias && !lhsused ){ |
|
ErrorMsg(lemp->filename,rp->ruleline, |
|
"Label \"%s\" for \"%s(%s)\" is never used.", |
|
rp->lhsalias,rp->lhs->name,rp->lhsalias); |
|
lemp->errorcnt++; |
|
} |
|
|
|
/* Generate destructor code for RHS symbols which are not used in the |
|
** reduce code */ |
|
for(i=0; i<rp->nrhs; i++){ |
|
if( rp->rhsalias[i] && !used[i] ){ |
|
ErrorMsg(lemp->filename,rp->ruleline, |
|
"Label $%s$ for \"%s(%s)\" is never used.", |
|
rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
|
lemp->errorcnt++; |
|
}else if( rp->rhsalias[i]==0 ){ |
|
if( has_destructor(rp->rhs[i],lemp) ){ |
|
fprintf(out," yy_destructor(%d,&yymsp[%d].minor);\n", |
|
rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++; |
|
}else{ |
|
fprintf(out," /* No destructor defined for %s */\n", |
|
rp->rhs[i]->name); |
|
(*lineno)++; |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/* |
|
** Print the definition of the union used for the parser's data stack. |
|
** This union contains fields for every possible data type for tokens |
|
** and nonterminals. In the process of computing and printing this |
|
** union, also set the ".dtnum" field of every terminal and nonterminal |
|
** symbol. |
|
*/ |
|
void print_stack_union( |
|
FILE *out, /* The output stream */ |
|
struct lemon *lemp, /* The main info structure for this parser */ |
|
int *plineno, /* Pointer to the line number */ |
|
int mhflag) /* True if generating makeheaders output */ |
|
{ |
|
int lineno = *plineno; /* The line number of the output */ |
|
char **types; /* A hash table of datatypes */ |
|
int arraysize; /* Size of the "types" array */ |
|
int maxdtlength; /* Maximum length of any ".datatype" field. */ |
|
char *stddt; /* Standardized name for a datatype */ |
|
int i,j; /* Loop counters */ |
|
int hash; /* For hashing the name of a type */ |
|
const char *name; /* Name of the parser */ |
|
|
|
/* Allocate and initialize types[] and allocate stddt[] */ |
|
arraysize = lemp->nsymbol * 2; |
|
types = (char**)malloc( arraysize * sizeof(char*) ); |
|
for(i=0; i<arraysize; i++) types[i] = 0; |
|
maxdtlength = 0; |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
int len; |
|
struct symbol *sp = lemp->symbols[i]; |
|
if( sp->datatype==0 ) continue; |
|
len = strlen(sp->datatype); |
|
if( len>maxdtlength ) maxdtlength = len; |
|
} |
|
stddt = (char*)malloc( maxdtlength*2 + 1 ); |
|
if( types==0 || stddt==0 ){ |
|
fprintf(stderr,"Out of memory.\n"); |
|
exit(1); |
|
} |
|
|
|
/* Build a hash table of datatypes. The ".dtnum" field of each symbol |
|
** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
|
** used for terminal symbols and for nonterminals which don't specify |
|
** a datatype using the %type directive. */ |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
struct symbol *sp = lemp->symbols[i]; |
|
char *cp; |
|
if( sp==lemp->errsym ){ |
|
sp->dtnum = arraysize+1; |
|
continue; |
|
} |
|
if( sp->type!=NONTERMINAL || sp->datatype==0 ){ |
|
sp->dtnum = 0; |
|
continue; |
|
} |
|
cp = sp->datatype; |
|
j = 0; |
|
while( safe_isspace(*cp) ) cp++; |
|
while( *cp ) stddt[j++] = *cp++; |
|
while( j>0 && safe_isspace(stddt[j-1]) ) j--; |
|
stddt[j] = 0; |
|
hash = 0; |
|
for(j=0; stddt[j]; j++){ |
|
hash = hash*53 + stddt[j]; |
|
} |
|
if( hash<0 ) hash = -hash; |
|
hash = hash%arraysize; |
|
while( types[hash] ){ |
|
if( strcmp(types[hash],stddt)==0 ){ |
|
sp->dtnum = hash + 1; |
|
break; |
|
} |
|
hash++; |
|
if( hash>=arraysize ) hash = 0; |
|
} |
|
if( types[hash]==0 ){ |
|
sp->dtnum = hash + 1; |
|
types[hash] = (char*)malloc( strlen(stddt)+1 ); |
|
if( types[hash]==0 ){ |
|
fprintf(stderr,"Out of memory.\n"); |
|
exit(1); |
|
} |
|
strcpy(types[hash],stddt); |
|
} |
|
} |
|
|
|
/* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
|
name = lemp->name ? lemp->name : "Parse"; |
|
lineno = *plineno; |
|
if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
|
fprintf(out,"#define %sTOKENTYPE %s\n",name, |
|
lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
|
if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
|
fprintf(out,"typedef union {\n"); lineno++; |
|
fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
|
for(i=0; i<arraysize; i++){ |
|
if( types[i]==0 ) continue; |
|
fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
|
free(types[i]); |
|
} |
|
fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
|
free(stddt); |
|
free(types); |
|
fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
|
*plineno = lineno; |
|
} |
|
|
|
char def_stacksize[] = "100"; |
|
|
|
/* Generate C source code for the parser */ |
|
void ReportTable( |
|
struct lemon *lemp, |
|
int mhflag) /* Output in makeheaders format if true */ |
|
{ |
|
FILE *out, *in; |
|
char line[LINESIZE]; |
|
int lineno; |
|
struct state *stp; |
|
struct action *ap; |
|
struct rule *rp; |
|
int i; |
|
int tablecnt; |
|
const char *name; |
|
|
|
in = tplt_open(lemp); |
|
if( in==0 ) return; |
|
out = file_open(lemp,".c","w"); |
|
if( out==0 ){ |
|
fclose(in); |
|
return; |
|
} |
|
lineno = 1; |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate the include code, if any */ |
|
tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno); |
|
if( mhflag ){ |
|
char *name2 = file_makename(lemp, ".h"); |
|
fprintf(out,"#include \"%s\"\n", name); lineno++; |
|
free(name2); |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate #defines for all tokens */ |
|
if( mhflag ){ |
|
const char *prefix; |
|
fprintf(out,"#if INTERFACE\n"); lineno++; |
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
|
else prefix = ""; |
|
for(i=1; i<lemp->nterminal; i++){ |
|
fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
|
lineno++; |
|
} |
|
fprintf(out,"#endif\n"); lineno++; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate the defines */ |
|
fprintf(out,"/* \001 */\n"); |
|
fprintf(out,"#define YYCODETYPE %s\n", |
|
lemp->nsymbol>250?"int":"unsigned char"); lineno++; |
|
fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; |
|
fprintf(out,"#define YYACTIONTYPE %s\n", |
|
lemp->nstate+lemp->nrule>250?"int":"unsigned char"); lineno++; |
|
print_stack_union(out,lemp,&lineno,mhflag); |
|
if( lemp->stacksize ){ |
|
if( atoi(lemp->stacksize)<=0 ){ |
|
ErrorMsg(lemp->filename,0, |
|
"Illegal stack size: [%s]. The stack size should be an integer constant.", |
|
lemp->stacksize); |
|
lemp->errorcnt++; |
|
lemp->stacksize = def_stacksize; |
|
} |
|
fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
|
}else{ |
|
fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
|
} |
|
if( mhflag ){ |
|
fprintf(out,"#if INTERFACE\n"); lineno++; |
|
} |
|
name = lemp->name ? lemp->name : "Parse"; |
|
if( lemp->arg && lemp->arg[0] ){ |
|
int j; |
|
j = strlen(lemp->arg); |
|
while( j>=1 && safe_isspace(lemp->arg[j-1]) ) j--; |
|
while( j>=1 && (safe_isalnum(lemp->arg[j-1]) || lemp->arg[j-1]=='_') ) j--; |
|
fprintf(out,"#define %sARGDECL ,%s\n",name,&lemp->arg[j]); lineno++; |
|
fprintf(out,"#define %sXARGDECL %s;\n",name,lemp->arg); lineno++; |
|
fprintf(out,"#define %sANSIARGDECL ,%s\n",name,lemp->arg); lineno++; |
|
}else{ |
|
fprintf(out,"#define %sARGDECL\n",name); lineno++; |
|
fprintf(out,"#define %sXARGDECL\n",name); lineno++; |
|
fprintf(out,"#define %sANSIARGDECL\n",name); lineno++; |
|
} |
|
if( mhflag ){ |
|
fprintf(out,"#endif\n"); lineno++; |
|
} |
|
fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; |
|
fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
|
fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
|
fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate the action table. |
|
** |
|
** Each entry in the action table is an element of the following |
|
** structure: |
|
** struct yyActionEntry { |
|
** YYCODETYPE lookahead; |
|
** YYACTIONTYPE action; |
|
** struct yyActionEntry *next; |
|
** } |
|
** |
|
** The entries are grouped into hash tables, one hash table for each |
|
** parser state. The hash table has a size which is the smallest |
|
** power of two needed to hold all entries. |
|
*/ |
|
tablecnt = 0; |
|
|
|
/* Loop over parser states */ |
|
for(i=0; i<lemp->nstate; i++){ |
|
size_t tablesize; /* size of the hash table */ |
|
unsigned int j,k; /* Loop counter */ |
|
int collide[2048]; /* The collision chain for the table */ |
|
struct action *table[2048]; /* Build the hash table here */ |
|
|
|
/* Find the number of actions and initialize the hash table */ |
|
stp = lemp->sorted[i]; |
|
stp->tabstart = tablecnt; |
|
stp->naction = 0; |
|
for(ap=stp->ap; ap; ap=ap->next){ |
|
if( ap->sp->index!=lemp->nsymbol && compute_action(lemp,ap)>=0 ){ |
|
stp->naction++; |
|
} |
|
} |
|
tablesize = 1; |
|
while( tablesize<stp->naction ) tablesize += tablesize; |
|
assert( tablesize<= sizeof(table)/sizeof(table[0]) ); |
|
for(j=0; j<tablesize; j++){ |
|
table[j] = 0; |
|
collide[j] = -1; |
|
} |
|
|
|
/* Hash the actions into the hash table */ |
|
stp->tabdfltact = lemp->nstate + lemp->nrule; |
|
for(ap=stp->ap; ap; ap=ap->next){ |
|
int action = compute_action(lemp,ap); |
|
int h; |
|
if( ap->sp->index==lemp->nsymbol ){ |
|
stp->tabdfltact = action; |
|
}else if( action>=0 ){ |
|
h = ap->sp->index & (tablesize-1); |
|
ap->collide = table[h]; |
|
table[h] = ap; |
|
} |
|
} |
|
|
|
/* Resolve collisions */ |
|
for(j=k=0; j<tablesize; j++){ |
|
if( table[j] && table[j]->collide ){ |
|
while( table[k] ) k++; |
|
table[k] = table[j]->collide; |
|
collide[j] = k; |
|
table[j]->collide = 0; |
|
if( k<j ) j = k-1; |
|
} |
|
} |
|
|
|
/* Print the hash table */ |
|
fprintf(out,"/* State %d */\n",stp->index); lineno++; |
|
for(j=0; j<tablesize; j++){ |
|
if( table[j]==0 ){ |
|
fprintf(out, |
|
" {YYNOCODE,0,0}, /* Unused */\n"); |
|
}else{ |
|
fprintf(out," {%4d,%4d, ", |
|
table[j]->sp->index, |
|
compute_action(lemp,table[j])); |
|
if( collide[j]>=0 ){ |
|
fprintf(out,"&yyActionTable[%4d] }, /* ", |
|
collide[j] + tablecnt); |
|
}else{ |
|
fprintf(out,"0 }, /* "); |
|
} |
|
PrintAction(table[j],out,22); |
|
fprintf(out," */\n"); |
|
} |
|
lineno++; |
|
} |
|
|
|
/* Update the table count */ |
|
tablecnt += tablesize; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
lemp->tablesize = tablecnt; |
|
|
|
/* Generate the state table |
|
** |
|
** Each entry is an element of the following structure: |
|
** struct yyStateEntry { |
|
** struct yyActionEntry *hashtbl; |
|
** int mask; |
|
** YYACTIONTYPE actionDefault; |
|
** } |
|
*/ |
|
for(i=0; i<lemp->nstate; i++){ |
|
size_t tablesize; |
|
stp = lemp->sorted[i]; |
|
tablesize = 1; |
|
while( tablesize<stp->naction ) tablesize += tablesize; |
|
fprintf(out," { &yyActionTable[%d], %lu, %d},\n", |
|
stp->tabstart, |
|
(unsigned long)tablesize - 1, |
|
stp->tabdfltact); lineno++; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate a table containing the symbolic name of every symbol */ |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
sprintf(line,"\"%s\",",lemp->symbols[i]->name); |
|
fprintf(out," %-15s",line); |
|
if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } |
|
} |
|
if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which executes every time a symbol is popped from |
|
** the stack while processing errors or while destroying the parser. |
|
** (In other words, generate the %destructor actions) */ |
|
if( lemp->tokendest ){ |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
struct symbol *sp = lemp->symbols[i]; |
|
if( sp==0 || sp->type!=TERMINAL ) continue; |
|
fprintf(out," case %d:\n",sp->index); lineno++; |
|
} |
|
for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
|
if( i<lemp->nsymbol ){ |
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
|
fprintf(out," break;\n"); lineno++; |
|
} |
|
} |
|
for(i=0; i<lemp->nsymbol; i++){ |
|
struct symbol *sp = lemp->symbols[i]; |
|
if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
|
fprintf(out," case %d:\n",sp->index); lineno++; |
|
emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
|
fprintf(out," break;\n"); lineno++; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which executes whenever the parser stack overflows */ |
|
tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno); |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate the table of rule information |
|
** |
|
** Note: This code depends on the fact that rules are number |
|
** sequentually beginning with 0. |
|
*/ |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which execution during each REDUCE action */ |
|
for(rp=lemp->rule; rp; rp=rp->next){ |
|
fprintf(out," case %d:\n",rp->index); lineno++; |
|
fprintf(out," YYTRACE(\"%s ::=",rp->lhs->name); |
|
for(i=0; i<rp->nrhs; i++) fprintf(out," %s",rp->rhs[i]->name); |
|
fprintf(out,"\")\n"); lineno++; |
|
emit_code(out,rp,lemp,&lineno); |
|
fprintf(out," break;\n"); lineno++; |
|
} |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which executes if a parse fails */ |
|
tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno); |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which executes when a syntax error occurs */ |
|
tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno); |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Generate code which executes when the parser accepts its input */ |
|
tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno); |
|
tplt_xfer(lemp->name,in,out,&lineno); |
|
|
|
/* Append any addition code the user desires */ |
|
tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno); |
|
|
|
fclose(in); |
|
fclose(out); |
|
return; |
|
} |
|
|
|
/* Generate a header file for the parser */ |
|
void ReportHeader(struct lemon *lemp) |
|
{ |
|
FILE *out, *in; |
|
const char *prefix; |
|
char line[LINESIZE]; |
|
char pattern[LINESIZE]; |
|
int i; |
|
|
|
if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
|
else prefix = ""; |
|
in = file_open(lemp,".h","r"); |
|
if( in ){ |
|
for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ |
|
sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
|
if( strcmp(line,pattern) ) break; |
|
} |
|
fclose(in); |
|
if( i==lemp->nterminal ){ |
|
/* No change in the file. Don't rewrite it. */ |
|
return; |
|
} |
|
} |
|
out = file_open(lemp,".h","w"); |
|
if( out ){ |
|
for(i=1; i<lemp->nterminal; i++){ |
|
fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
|
} |
|
fclose(out); |
|
} |
|
return; |
|
} |
|
|
|
/* Reduce the size of the action tables, if possible, by making use |
|
** of defaults. |
|
** |
|
** In this version, if all REDUCE actions use the same rule, make |
|
** them the default. Only default them if there are more than one. |
|
*/ |
|
void CompressTables(struct lemon *lemp) |
|
{ |
|
struct state *stp; |
|
struct action *ap; |
|
struct rule *rp; |
|
int i; |
|
int cnt; |
|
|
|
for(i=0; i<lemp->nstate; i++){ |
|
stp = lemp->sorted[i]; |
|
|
|
/* Find the first REDUCE action */ |
|
for(ap=stp->ap; ap && ap->type!=REDUCE; ap=ap->next); |
|
if( ap==0 ) continue; |
|
|
|
/* Remember the rule used */ |
|
rp = ap->x.rp; |
|
|
|
/* See if all other REDUCE acitons use the same rule */ |
|
cnt = 1; |
|
for(ap=ap->next; ap; ap=ap->next){ |
|
if( ap->type==REDUCE ){ |
|
if( ap->x.rp!=rp ) break; |
|
cnt++; |
|
} |
|
} |
|
if( ap || cnt==1 ) continue; |
|
|
|
/* Combine all REDUCE actions into a single default */ |
|
for(ap=stp->ap; ap && ap->type!=REDUCE; ap=ap->next); |
|
assert( ap ); |
|
ap->sp = Symbol_new("{default}"); |
|
for(ap=ap->next; ap; ap=ap->next){ |
|
if( ap->type==REDUCE ) ap->type = NOT_USED; |
|
} |
|
stp->ap = Action_sort(stp->ap); |
|
} |
|
} |
|
/***************** From the file "set.c" ************************************/ |
|
/* |
|
** Set manipulation routines for the LEMON parser generator. |
|
*/ |
|
|
|
static int size = 0; |
|
|
|
/* Set the set size */ |
|
void SetSize(int n) |
|
{ |
|
size = n+1; |
|
} |
|
|
|
/* Allocate a new set */ |
|
char *SetNew(void){ |
|
char *s; |
|
int i; |
|
s = (char*)malloc( size ); |
|
if( s==0 ){ |
|
memory_error(); |
|
} |
|
for(i=0; i<size; i++) s[i] = 0; |
|
return s; |
|
} |
|
|
|
/* Deallocate a set */ |
|
void SetFree(char *s) |
|
{ |
|
free(s); |
|
} |
|
|
|
/* Add a new element to the set. Return TRUE if the element was added |
|
** and FALSE if it was already there. */ |
|
int SetAdd(char *s, int e) |
|
{ |
|
int rv; |
|
rv = s[e]; |
|
s[e] = 1; |
|
return !rv; |
|
} |
|
|
|
/* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
|
int SetUnion(char *s1, char *s2) |
|
{ |
|
int i, progress; |
|
progress = 0; |
|
for(i=0; i<size; i++){ |
|
if( s2[i]==0 ) continue; |
|
if( s1[i]==0 ){ |
|
progress = 1; |
|
s1[i] = 1; |
|
} |
|
} |
|
return progress; |
|
} |
|
/********************** From the file "table.c" ****************************/ |
|
/* |
|
** All code in this file has been automatically generated |
|
** from a specification in the file |
|
** "table.q" |
|
** by the associative array code building program "aagen". |
|
** Do not edit this file! Instead, edit the specification |
|
** file, then rerun aagen. |
|
*/ |
|
/* |
|
** Code for processing tables in the LEMON parser generator. |
|
*/ |
|
PRIVATE int strhash(const char *); |
|
PRIVATE int statecmp(struct config *, struct config *); |
|
PRIVATE int statehash(struct config *); |
|
PRIVATE int confighash(struct config *); |
|
|
|
PRIVATE int strhash(const char *x) |
|
{ |
|
int h = 0; |
|
while( *x) h = h*13 + *(x++); |
|
return h; |
|
} |
|
|
|
/* Works like strdup, sort of. Save a string in malloced memory, but |
|
** keep strings in a table so that the same string is not in more |
|
** than one place. |
|
*/ |
|
char *Strsafe(const char *y) |
|
{ |
|
char *z; |
|
|
|
z = Strsafe_find(y); |
|
if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){ |
|
strcpy(z,y); |
|
Strsafe_insert(z); |
|
} |
|
MemoryCheck(z); |
|
return z; |
|
} |
|
|
|
/* There is one instance of the following structure for each |
|
** associative array of type "x1". |
|
*/ |
|
struct s_x1 { |
|
int size; /* The number of available slots. */ |
|
/* Must be a power of 2 greater than or */ |
|
/* equal to 1 */ |
|
int count; /* Number of currently slots filled */ |
|
struct s_x1node *tbl; /* The data stored here */ |
|
struct s_x1node **ht; /* Hash table for lookups */ |
|
}; |
|
|
|
/* There is one instance of this structure for every data element |
|
** in an associative array of type "x1". |
|
*/ |
|
typedef struct s_x1node { |
|
char *data; /* The data */ |
|
struct s_x1node *next; /* Next entry with the same hash */ |
|
struct s_x1node **from; /* Previous link */ |
|
} x1node; |
|
|
|
/* There is only one instance of the array, which is the following */ |
|
static struct s_x1 *x1a; |
|
|
|
/* Allocate a new associative array */ |
|
void Strsafe_init(void){ |
|
if( x1a ) return; |
|
x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
|
if( x1a ){ |
|
x1a->size = 1024; |
|
x1a->count = 0; |
|
x1a->tbl = (x1node*)malloc( |
|
(sizeof(x1node) + sizeof(x1node*))*1024 ); |
|
if( x1a->tbl==0 ){ |
|
free(x1a); |
|
x1a = 0; |
|
}else{ |
|
int i; |
|
x1a->ht = (x1node**)&(x1a->tbl[1024]); |
|
for(i=0; i<1024; i++) x1a->ht[i] = 0; |
|
} |
|
} |
|
} |
|
/* Insert a new record into the array. Return TRUE if successful. |
|
** Prior data with the same key is NOT overwritten */ |
|
int Strsafe_insert(char *data) |
|
{ |
|
x1node *np; |
|
int h; |
|
int ph; |
|
|
|
if( x1a==0 ) return 0; |
|
ph = strhash(data); |
|
h = ph & (x1a->size-1); |
|
np = x1a->ht[h]; |
|
while( np ){ |
|
if( strcmp(np->data,data)==0 ){ |
|
/* An existing entry with the same key is found. */ |
|
/* Fail because overwrite is not allows. */ |
|
return 0; |
|
} |
|
np = np->next; |
|
} |
|
if( x1a->count>=x1a->size ){ |
|
/* Need to make the hash table bigger */ |
|
int i,mysize; |
|
struct s_x1 array; |
|
array.size = mysize = x1a->size*2; |
|
array.count = x1a->count; |
|
array.tbl = (x1node*)malloc( |
|
(sizeof(x1node) + sizeof(x1node*))*mysize ); |
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
|
array.ht = (x1node**)&(array.tbl[mysize]); |
|
for(i=0; i<mysize; i++) array.ht[i] = 0; |
|
for(i=0; i<x1a->count; i++){ |
|
x1node *oldnp, *newnp; |
|
oldnp = &(x1a->tbl[i]); |
|
h = strhash(oldnp->data) & (mysize-1); |
|
newnp = &(array.tbl[i]); |
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
|
newnp->next = array.ht[h]; |
|
newnp->data = oldnp->data; |
|
newnp->from = &(array.ht[h]); |
|
array.ht[h] = newnp; |
|
} |
|
free(x1a->tbl); |
|
*x1a = array; |
|
} |
|
/* Insert the new data */ |
|
h = ph & (x1a->size-1); |
|
np = &(x1a->tbl[x1a->count++]); |
|
np->data = data; |
|
if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
|
np->next = x1a->ht[h]; |
|
x1a->ht[h] = np; |
|
np->from = &(x1a->ht[h]); |
|
return 1; |
|
} |
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL |
|
** if no such key. */ |
|
char *Strsafe_find(const char *key) |
|
{ |
|
int h; |
|
x1node *np; |
|
|
|
if( x1a==0 ) return 0; |
|
h = strhash(key) & (x1a->size-1); |
|
np = x1a->ht[h]; |
|
while( np ){ |
|
if( strcmp(np->data,key)==0 ) break; |
|
np = np->next; |
|
} |
|
return np ? np->data : 0; |
|
} |
|
|
|
/* Return a pointer to the (terminal or nonterminal) symbol "x". |
|
** Create a new symbol if this is the first time "x" has been seen. |
|
*/ |
|
struct symbol *Symbol_new(const char *x) |
|
{ |
|
struct symbol *sp; |
|
|
|
sp = Symbol_find(x); |
|
if( sp==0 ){ |
|
sp = (struct symbol *)malloc( sizeof(struct symbol) ); |
|
MemoryCheck(sp); |
|
sp->name = Strsafe(x); |
|
sp->type = safe_isupper(*x) ? TERMINAL : NONTERMINAL; |
|
sp->rule = 0; |
|
sp->prec = -1; |
|
sp->assoc = UNK; |
|
sp->firstset = 0; |
|
sp->lambda = BOOL_FALSE; |
|
sp->destructor = 0; |
|
sp->datatype = 0; |
|
Symbol_insert(sp,sp->name); |
|
} |
|
return sp; |
|
} |
|
|
|
/* Compare two symbols */ |
|
int Symbolcmpp(const void *a_arg, const void *b_arg) |
|
{ |
|
/* MSVC complains about this, but it's wrong. GCC does not |
|
complain about this, as is right. From Guy Harris: |
|
|
|
At least as I read the ANSI C spec, GCC is right and MSVC is wrong here. |
|
The arguments are pointers to "const void", and should be cast to |
|
pointers to "const struct symbol *"; however, at least as I read the |
|
spec, "const struct symbol **" is "pointer to pointer to const struct |
|
symbol", not "pointer to const pointer to struct symbol". |
|
*/ |
|
|
|
struct symbol *const *a = a_arg; |
|
struct symbol *const *b = b_arg; |
|
|
|
return strcmp((**a).name,(**b).name); |
|
} |
|
|
|
/* There is one instance of the following structure for each |
|
** associative array of type "x2". |
|
*/ |
|
struct s_x2 { |
|
int size; /* The number of available slots. */ |
|
/* Must be a power of 2 greater than or */ |
|
/* equal to 1 */ |
|
int count; /* Number of currently slots filled */ |
|
struct s_x2node *tbl; /* The data stored here */ |
|
struct s_x2node **ht; /* Hash table for lookups */ |
|
}; |
|
|
|
/* There is one instance of this structure for every data element |
|
** in an associative array of type "x2". |
|
*/ |
|
typedef struct s_x2node { |
|
struct symbol *data; /* The data */ |
|
char *key; /* The key */ |
|
struct s_x2node *next; /* Next entry with the same hash */ |
|
struct s_x2node **from; /* Previous link */ |
|
} x2node; |
|
|
|
/* There is only one instance of the array, which is the following */ |
|
static struct s_x2 *x2a; |
|
|
|
/* Allocate a new associative array */ |
|
void Symbol_init(void){ |
|
if( x2a ) return; |
|
x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
|
if( x2a ){ |
|
x2a->size = 128; |
|
x2a->count = 0; |
|
x2a->tbl = (x2node*)malloc( |
|
(sizeof(x2node) + sizeof(x2node*))*128 ); |
|
if( x2a->tbl==0 ){ |
|
free(x2a); |
|
x2a = 0; |
|
}else{ |
|
int i; |
|
x2a->ht = (x2node**)&(x2a->tbl[128]); |
|
for(i=0; i<128; i++) x2a->ht[i] = 0; |
|
} |
|
} |
|
} |
|
/* Insert a new record into the array. Return TRUE if successful. |
|
** Prior data with the same key is NOT overwritten */ |
|
int Symbol_insert(struct symbol *data, char *key) |
|
{ |
|
x2node *np; |
|
int h; |
|
int ph; |
|
|
|
if( x2a==0 ) return 0; |
|
ph = strhash(key); |
|
h = ph & (x2a->size-1); |
|
np = x2a->ht[h]; |
|
while( np ){ |
|
if( strcmp(np->key,key)==0 ){ |
|
/* An existing entry with the same key is found. */ |
|
/* Fail because overwrite is not allows. */ |
|
return 0; |
|
} |
|
np = np->next; |
|
} |
|
if( x2a->count>=x2a->size ){ |
|
/* Need to make the hash table bigger */ |
|
int i,mysize; |
|
struct s_x2 array; |
|
array.size = mysize = x2a->size*2; |
|
array.count = x2a->count; |
|
array.tbl = (x2node*)malloc( |
|
(sizeof(x2node) + sizeof(x2node*))*mysize ); |
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
|
array.ht = (x2node**)&(array.tbl[mysize]); |
|
for(i=0; i<mysize; i++) array.ht[i] = 0; |
|
for(i=0; i<x2a->count; i++){ |
|
x2node *oldnp, *newnp; |
|
oldnp = &(x2a->tbl[i]); |
|
h = strhash(oldnp->key) & (mysize-1); |
|
newnp = &(array.tbl[i]); |
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
|
newnp->next = array.ht[h]; |
|
newnp->key = oldnp->key; |
|
newnp->data = oldnp->data; |
|
newnp->from = &(array.ht[h]); |
|
array.ht[h] = newnp; |
|
} |
|
free(x2a->tbl); |
|
*x2a = array; |
|
} |
|
/* Insert the new data */ |
|
h = ph & (x2a->size-1); |
|
np = &(x2a->tbl[x2a->count++]); |
|
np->key = key; |
|
np->data = data; |
|
if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
|
np->next = x2a->ht[h]; |
|
x2a->ht[h] = np; |
|
np->from = &(x2a->ht[h]); |
|
return 1; |
|
} |
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL |
|
** if no such key. */ |
|
struct symbol *Symbol_find(const char *key) |
|
{ |
|
int h; |
|
x2node *np; |
|
|
|
if( x2a==0 ) return 0; |
|
h = strhash(key) & (x2a->size-1); |
|
np = x2a->ht[h]; |
|
while( np ){ |
|
if( strcmp(np->key,key)==0 ) break; |
|
np = np->next; |
|
} |
|
return np ? np->data : 0; |
|
} |
|
|
|
/* Return the n-th data. Return NULL if n is out of range. */ |
|
struct symbol *Symbol_Nth(int n) |
|
{ |
|
struct symbol *data; |
|
if( x2a && n>0 && n<=x2a->count ){ |
|
data = x2a->tbl[n-1].data; |
|
}else{ |
|
data = 0; |
|
} |
|
return data; |
|
} |
|
|
|
/* Return the size of the array */ |
|
int Symbol_count(void) |
|
{ |
|
return x2a ? x2a->count : 0; |
|
} |
|
|
|
/* Return an array of pointers to all data in the table. |
|
** The array is obtained from malloc. Return NULL if memory allocation |
|
** problems, or if the array is empty. */ |
|
struct symbol **Symbol_arrayof(void) |
|
{ |
|
struct symbol **array; |
|
int i,mysize; |
|
if( x2a==0 ) return 0; |
|
mysize = x2a->count; |
|
array = (struct symbol **)malloc( sizeof(struct symbol *)*mysize ); |
|
if( array ){ |
|
for(i=0; i<mysize; i++) array[i] = x2a->tbl[i].data; |
|
} |
|
return array; |
|
} |
|
|
|
/* Compare two configurations */ |
|
int Configcmp(const void *a_arg, const void *b_arg) |
|
{ |
|
const struct config *a = a_arg, *b = b_arg; |
|
int x; |
|
x = a->rp->index - b->rp->index; |
|
if( x==0 ) x = a->dot - b->dot; |
|
return x; |
|
} |
|
|
|
/* Compare two states */ |
|
PRIVATE int statecmp(struct config *a, struct config *b) |
|
{ |
|
int rc; |
|
for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
|
rc = a->rp->index - b->rp->index; |
|
if( rc==0 ) rc = a->dot - b->dot; |
|
} |
|
if( rc==0 ){ |
|
if( a ) rc = 1; |
|
if( b ) rc = -1; |
|
} |
|
return rc; |
|
} |
|
|
|
/* Hash a state */ |
|
PRIVATE int statehash(struct config *a) |
|
{ |
|
int h=0; |
|
while( a ){ |
|
h = h*571 + a->rp->index*37 + a->dot; |
|
a = a->bp; |
|
} |
|
return h; |
|
} |
|
|
|
/* Allocate a new state structure */ |
|
struct state *State_new(void) |
|
{ |
|
struct state *new; |
|
new = (struct state *)malloc( sizeof(struct state) ); |
|
MemoryCheck(new); |
|
return new; |
|
} |
|
|
|
/* There is one instance of the following structure for each |
|
** associative array of type "x3". |
|
*/ |
|
struct s_x3 { |
|
int size; /* The number of available slots. */ |
|
/* Must be a power of 2 greater than or */ |
|
/* equal to 1 */ |
|
int count; /* Number of currently slots filled */ |
|
struct s_x3node *tbl; /* The data stored here */ |
|
struct s_x3node **ht; /* Hash table for lookups */ |
|
}; |
|
|
|
/* There is one instance of this structure for every data element |
|
** in an associative array of type "x3". |
|
*/ |
|
typedef struct s_x3node { |
|
struct state *data; /* The data */ |
|
struct config *key; /* The key */ |
|
struct s_x3node *next; /* Next entry with the same hash */ |
|
struct s_x3node **from; /* Previous link */ |
|
} x3node; |
|
|
|
/* There is only one instance of the array, which is the following */ |
|
static struct s_x3 *x3a; |
|
|
|
/* Allocate a new associative array */ |
|
void State_init(void){ |
|
if( x3a ) return; |
|
x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
|
if( x3a ){ |
|
x3a->size = 128; |
|
x3a->count = 0; |
|
x3a->tbl = (x3node*)malloc( |
|
(sizeof(x3node) + sizeof(x3node*))*128 ); |
|
if( x3a->tbl==0 ){ |
|
free(x3a); |
|
x3a = 0; |
|
}else{ |
|
int i; |
|
x3a->ht = (x3node**)&(x3a->tbl[128]); |
|
for(i=0; i<128; i++) x3a->ht[i] = 0; |
|
} |
|
} |
|
} |
|
/* Insert a new record into the array. Return TRUE if successful. |
|
** Prior data with the same key is NOT overwritten */ |
|
int State_insert(struct state *data, struct config *key) |
|
{ |
|
x3node *np; |
|
int h; |
|
int ph; |
|
|
|
if( x3a==0 ) return 0; |
|
ph = statehash(key); |
|
h = ph & (x3a->size-1); |
|
np = x3a->ht[h]; |
|
while( np ){ |
|
if( statecmp(np->key,key)==0 ){ |
|
/* An existing entry with the same key is found. */ |
|
/* Fail because overwrite is not allows. */ |
|
return 0; |
|
} |
|
np = np->next; |
|
} |
|
if( x3a->count>=x3a->size ){ |
|
/* Need to make the hash table bigger */ |
|
int i,mysize; |
|
struct s_x3 array; |
|
array.size = mysize = x3a->size*2; |
|
array.count = x3a->count; |
|
array.tbl = (x3node*)malloc( |
|
(sizeof(x3node) + sizeof(x3node*))*mysize ); |
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
|
array.ht = (x3node**)&(array.tbl[mysize]); |
|
for(i=0; i<mysize; i++) array.ht[i] = 0; |
|
for(i=0; i<x3a->count; i++){ |
|
x3node *oldnp, *newnp; |
|
oldnp = &(x3a->tbl[i]); |
|
h = statehash(oldnp->key) & (mysize-1); |
|
newnp = &(array.tbl[i]); |
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
|
newnp->next = array.ht[h]; |
|
newnp->key = oldnp->key; |
|
newnp->data = oldnp->data; |
|
newnp->from = &(array.ht[h]); |
|
array.ht[h] = newnp; |
|
} |
|
free(x3a->tbl); |
|
*x3a = array; |
|
} |
|
/* Insert the new data */ |
|
h = ph & (x3a->size-1); |
|
np = &(x3a->tbl[x3a->count++]); |
|
np->key = key; |
|
np->data = data; |
|
if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
|
np->next = x3a->ht[h]; |
|
x3a->ht[h] = np; |
|
np->from = &(x3a->ht[h]); |
|
return 1; |
|
} |
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL |
|
** if no such key. */ |
|
struct state *State_find(struct config *key) |
|
{ |
|
int h; |
|
x3node *np; |
|
|
|
if( x3a==0 ) return 0; |
|
h = statehash(key) & (x3a->size-1); |
|
np = x3a->ht[h]; |
|
while( np ){ |
|
if( statecmp(np->key,key)==0 ) break; |
|
np = np->next; |
|
} |
|
return np ? np->data : 0; |
|
} |
|
|
|
/* Return an array of pointers to all data in the table. |
|
** The array is obtained from malloc. Return NULL if memory allocation |
|
** problems, or if the array is empty. */ |
|
struct state **State_arrayof(void) |
|
{ |
|
struct state **array; |
|
int i,mysize; |
|
if( x3a==0 ) return 0; |
|
mysize = x3a->count; |
|
array = (struct state **)malloc( sizeof(struct state *)*mysize ); |
|
if( array ){ |
|
for(i=0; i<mysize; i++) array[i] = x3a->tbl[i].data; |
|
} |
|
return array; |
|
} |
|
|
|
/* Hash a configuration */ |
|
PRIVATE int confighash(struct config *a) |
|
{ |
|
int h=0; |
|
h = h*571 + a->rp->index*37 + a->dot; |
|
return h; |
|
} |
|
|
|
/* There is one instance of the following structure for each |
|
** associative array of type "x4". |
|
*/ |
|
struct s_x4 { |
|
int size; /* The number of available slots. */ |
|
/* Must be a power of 2 greater than or */ |
|
/* equal to 1 */ |
|
int count; /* Number of currently slots filled */ |
|
struct s_x4node *tbl; /* The data stored here */ |
|
struct s_x4node **ht; /* Hash table for lookups */ |
|
}; |
|
|
|
/* There is one instance of this structure for every data element |
|
** in an associative array of type "x4". |
|
*/ |
|
typedef struct s_x4node { |
|
struct config *data; /* The data */ |
|
struct s_x4node *next; /* Next entry with the same hash */ |
|
struct s_x4node **from; /* Previous link */ |
|
} x4node; |
|
|
|
/* There is only one instance of the array, which is the following */ |
|
static struct s_x4 *x4a; |
|
|
|
/* Allocate a new associative array */ |
|
void Configtable_init(void){ |
|
if( x4a ) return; |
|
x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
|
if( x4a ){ |
|
x4a->size = 64; |
|
x4a->count = 0; |
|
x4a->tbl = (x4node*)malloc( |
|
(sizeof(x4node) + sizeof(x4node*))*64 ); |
|
if( x4a->tbl==0 ){ |
|
free(x4a); |
|
x4a = 0; |
|
}else{ |
|
int i; |
|
x4a->ht = (x4node**)&(x4a->tbl[64]); |
|
for(i=0; i<64; i++) x4a->ht[i] = 0; |
|
} |
|
} |
|
} |
|
/* Insert a new record into the array. Return TRUE if successful. |
|
** Prior data with the same key is NOT overwritten */ |
|
int Configtable_insert(struct config *data) |
|
{ |
|
x4node *np; |
|
int h; |
|
int ph; |
|
|
|
if( x4a==0 ) return 0; |
|
ph = confighash(data); |
|
h = ph & (x4a->size-1); |
|
np = x4a->ht[h]; |
|
while( np ){ |
|
if( Configcmp(np->data,data)==0 ){ |
|
/* An existing entry with the same key is found. */ |
|
/* Fail because overwrite is not allows. */ |
|
return 0; |
|
} |
|
np = np->next; |
|
} |
|
if( x4a->count>=x4a->size ){ |
|
/* Need to make the hash table bigger */ |
|
int i,mysize; |
|
struct s_x4 array; |
|
array.size = mysize = x4a->size*2; |
|
array.count = x4a->count; |
|
array.tbl = (x4node*)malloc( |
|
(sizeof(x4node) + sizeof(x4node*))*mysize ); |
|
if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
|
array.ht = (x4node**)&(array.tbl[mysize]); |
|
for(i=0; i<mysize; i++) array.ht[i] = 0; |
|
for(i=0; i<x4a->count; i++){ |
|
x4node *oldnp, *newnp; |
|
oldnp = &(x4a->tbl[i]); |
|
h = confighash(oldnp->data) & (mysize-1); |
|
newnp = &(array.tbl[i]); |
|
if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
|
newnp->next = array.ht[h]; |
|
newnp->data = oldnp->data; |
|
newnp->from = &(array.ht[h]); |
|
array.ht[h] = newnp; |
|
} |
|
free(x4a->tbl); |
|
*x4a = array; |
|
} |
|
/* Insert the new data */ |
|
h = ph & (x4a->size-1); |
|
np = &(x4a->tbl[x4a->count++]); |
|
np->data = data; |
|
if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
|
np->next = x4a->ht[h]; |
|
x4a->ht[h] = np; |
|
np->from = &(x4a->ht[h]); |
|
return 1; |
|
} |
|
|
|
/* Return a pointer to data assigned to the given key. Return NULL |
|
** if no such key. */ |
|
struct config *Configtable_find(struct config *key) |
|
{ |
|
int h; |
|
x4node *np; |
|
|
|
if( x4a==0 ) return 0; |
|
h = confighash(key) & (x4a->size-1); |
|
np = x4a->ht[h]; |
|
while( np ){ |
|
if( Configcmp(np->data,key)==0 ) break; |
|
np = np->next; |
|
} |
|
return np ? np->data : 0; |
|
} |
|
|
|
/* Remove all data from the table. Pass each data to the function "f" |
|
** as it is removed. ("f" may be null to avoid this step.) */ |
|
void Configtable_clear(int(*f)(struct config *)) |
|
{ |
|
int i; |
|
if( x4a==0 || x4a->count==0 ) return; |
|
if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
|
for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
|
x4a->count = 0; |
|
return; |
|
}
|
|
|