mirror of https://github.com/yasm/yasm.git
svn path=/trunk/yasm/; revision=6950.3
parent
320a83294e
commit
c0eee0f5b8
6 changed files with 0 additions and 5442 deletions
@ -1 +0,0 @@ |
|||||||
lemon |
|
@ -1,12 +0,0 @@ |
|||||||
# $IdPath$
|
|
||||||
CFLAGS = @ANSI_CFLAGS@
|
|
||||||
|
|
||||||
noinst_PROGRAMS = lemon
|
|
||||||
|
|
||||||
lemon_SOURCES = \
|
|
||||||
lemon.c
|
|
||||||
|
|
||||||
EXTRA_DIST = \
|
|
||||||
lemon.html \
|
|
||||||
lempar.c \
|
|
||||||
README
|
|
@ -1,14 +0,0 @@ |
|||||||
$IdPath$ |
|
||||||
$Id: README,v 1.3 2002/04/12 04:12:11 peter Exp $ |
|
||||||
|
|
||||||
The Lemon Parser Generator's home page is: |
|
||||||
|
|
||||||
http://www.hwaci.com/sw/lemon/index.html |
|
||||||
|
|
||||||
The file in this directory, lemon.html, was obtained from: |
|
||||||
|
|
||||||
http://www.hwaci.com/sw/lemon/lemon.html |
|
||||||
|
|
||||||
lemon.c has been modified to include the t= and o= command-line |
|
||||||
arguments. These changes are thanks to the FreeBSD project ports |
|
||||||
collection. |
|
File diff suppressed because it is too large
Load Diff
@ -1,861 +0,0 @@ |
|||||||
<html> |
|
||||||
<head> |
|
||||||
<title>The Lemon Parser Generator</title> |
|
||||||
</head> |
|
||||||
<body bgcolor=white> |
|
||||||
<h1 align=center>The Lemon Parser Generator</h1> |
|
||||||
|
|
||||||
<p>Lemon is an LALR(1) parser generator for C or C++. |
|
||||||
It does the same job as ``bison'' and ``yacc''. |
|
||||||
But lemon is not another bison or yacc clone. It |
|
||||||
uses a different grammar syntax which is designed to |
|
||||||
reduce the number of coding errors. Lemon also uses a more |
|
||||||
sophisticated parsing engine that is faster than yacc and |
|
||||||
bison and which is both reentrant and thread-safe. |
|
||||||
Furthermore, Lemon implements features that can be used |
|
||||||
to eliminate resource leaks, making is suitable for use |
|
||||||
in long-running programs such as graphical user interfaces |
|
||||||
or embedded controllers.</p> |
|
||||||
|
|
||||||
<p>This document is an introduction to the Lemon |
|
||||||
parser generator.</p> |
|
||||||
|
|
||||||
<h2>Theory of Operation</h2> |
|
||||||
|
|
||||||
<p>The main goal of Lemon is to translate a context free grammar (CFG) |
|
||||||
for a particular language into C code that implements a parser for |
|
||||||
that language. |
|
||||||
The program has two inputs: |
|
||||||
<ul> |
|
||||||
<li>The grammar specification. |
|
||||||
<li>A parser template file. |
|
||||||
</ul> |
|
||||||
Typically, only the grammar specification is supplied by the programmer. |
|
||||||
Lemon comes with a default parser template which works fine for most |
|
||||||
applications. But the user is free to substitute a different parser |
|
||||||
template if desired.</p> |
|
||||||
|
|
||||||
<p>Depending on command-line options, Lemon will generate between |
|
||||||
one and three files of outputs. |
|
||||||
<ul> |
|
||||||
<li>C code to implement the parser. |
|
||||||
<li>A header file defining an integer ID for each terminal symbol. |
|
||||||
<li>An information file that describes the states of the generated parser |
|
||||||
automaton. |
|
||||||
</ul> |
|
||||||
By default, all three of these output files are generated. |
|
||||||
The header file is suppressed if the ``-m'' command-line option is |
|
||||||
used and the report file is omitted when ``-q'' is selected.</p> |
|
||||||
|
|
||||||
<p>The grammar specification file uses a ``.y'' suffix, by convention. |
|
||||||
In the examples used in this document, we'll assume the name of the |
|
||||||
grammar file is ``gram.y''. A typical use of Lemon would be the |
|
||||||
following command: |
|
||||||
<pre> |
|
||||||
lemon gram.y |
|
||||||
</pre> |
|
||||||
This command will generate three output files named ``gram.c'', |
|
||||||
``gram.h'' and ``gram.out''. |
|
||||||
The first is C code to implement the parser. The second |
|
||||||
is the header file that defines numerical values for all |
|
||||||
terminal symbols, and the last is the report that explains |
|
||||||
the states used by the parser automaton.</p> |
|
||||||
|
|
||||||
<h3>Command Line Options</h3> |
|
||||||
|
|
||||||
<p>The behavior of Lemon can be modified using command-line options. |
|
||||||
You can obtain a list of the available command-line options together |
|
||||||
with a brief explanation of what each does by typing |
|
||||||
<pre> |
|
||||||
lemon -? |
|
||||||
</pre> |
|
||||||
As of this writing, the following command-line options are supported: |
|
||||||
<ul> |
|
||||||
<li><tt>-b</tt> |
|
||||||
<li><tt>-c</tt> |
|
||||||
<li><tt>-g</tt> |
|
||||||
<li><tt>-m</tt> |
|
||||||
<li><tt>-q</tt> |
|
||||||
<li><tt>-s</tt> |
|
||||||
<li><tt>-x</tt> |
|
||||||
</ul> |
|
||||||
The ``-b'' option reduces the amount of text in the report file by |
|
||||||
printing only the basis of each parser state, rather than the full |
|
||||||
configuration. |
|
||||||
The ``-c'' option suppresses action table compression. Using -c |
|
||||||
will make the parser a little larger and slower but it will detect |
|
||||||
syntax errors sooner. |
|
||||||
The ``-g'' option causes no output files to be generated at all. |
|
||||||
Instead, the input grammar file is printed on standard output but |
|
||||||
with all comments, actions and other extraneous text deleted. This |
|
||||||
is a useful way to get a quick summary of a grammar. |
|
||||||
The ``-m'' option causes the output C source file to be compatible |
|
||||||
with the ``makeheaders'' program. |
|
||||||
Makeheaders is a program that automatically generates header files |
|
||||||
from C source code. When the ``-m'' option is used, the header |
|
||||||
file is not output since the makeheaders program will take care |
|
||||||
of generated all header files automatically. |
|
||||||
The ``-q'' option suppresses the report file. |
|
||||||
Using ``-s'' causes a brief summary of parser statistics to be |
|
||||||
printed. Like this: |
|
||||||
<pre> |
|
||||||
Parser statistics: 74 terminals, 70 nonterminals, 179 rules |
|
||||||
340 states, 2026 parser table entries, 0 conflicts |
|
||||||
</pre> |
|
||||||
Finally, the ``-x'' option causes Lemon to print its version number |
|
||||||
and copyright information |
|
||||||
and then stop without attempting to read the grammar or generate a parser.</p> |
|
||||||
|
|
||||||
<h3>The Parser Interface</h3> |
|
||||||
|
|
||||||
<p>Lemon doesn't generate a complete, working program. It only generates |
|
||||||
a few subroutines that implement a parser. This section describes |
|
||||||
the interface to those subroutines. It is up to the programmer to |
|
||||||
call these subroutines in an appropriate way in order to produce a |
|
||||||
complete system.</p> |
|
||||||
|
|
||||||
<p>Before a program begins using a Lemon-generated parser, the program |
|
||||||
must first create the parser. |
|
||||||
A new parser is created as follows: |
|
||||||
<pre> |
|
||||||
void *pParser = ParseAlloc( malloc ); |
|
||||||
</pre> |
|
||||||
The ParseAlloc() routine allocates and initializes a new parser and |
|
||||||
returns a pointer to it. |
|
||||||
The actual data structure used to represent a parser is opaque -- |
|
||||||
its internal structure is not visible or usable by the calling routine. |
|
||||||
For this reason, the ParseAlloc() routine returns a pointer to void |
|
||||||
rather than a pointer to some particular structure. |
|
||||||
The sole argument to the ParseAlloc() routine is a pointer to the |
|
||||||
subroutine used to allocate memory. Typically this means ``malloc()''.</p> |
|
||||||
|
|
||||||
<p>After a program is finished using a parser, it can reclaim all |
|
||||||
memory allocated by that parser by calling |
|
||||||
<pre> |
|
||||||
ParseFree(pParser, free); |
|
||||||
</pre> |
|
||||||
The first argument is the same pointer returned by ParseAlloc(). The |
|
||||||
second argument is a pointer to the function used to release bulk |
|
||||||
memory back to the system.</p> |
|
||||||
|
|
||||||
<p>After a parser has been allocated using ParseAlloc(), the programmer |
|
||||||
must supply the parser with a sequence of tokens (terminal symbols) to |
|
||||||
be parsed. This is accomplished by calling the following function |
|
||||||
once for each token: |
|
||||||
<pre> |
|
||||||
Parse(pParser, hTokenID, sTokenData, pArg); |
|
||||||
</pre> |
|
||||||
The first argument to the Parse() routine is the pointer returned by |
|
||||||
ParseAlloc(). |
|
||||||
The second argument is a small positive integer that tells the parse the |
|
||||||
type of the next token in the data stream. |
|
||||||
There is one token type for each terminal symbol in the grammar. |
|
||||||
The gram.h file generated by Lemon contains #define statements that |
|
||||||
map symbolic terminal symbol names into appropriate integer values. |
|
||||||
(A value of 0 for the second argument is a special flag to the |
|
||||||
parser to indicate that the end of input has been reached.) |
|
||||||
The third argument is the value of the given token. By default, |
|
||||||
the type of the third argument is integer, but the grammar will |
|
||||||
usually redefine this type to be some kind of structure. |
|
||||||
Typically the second argument will be a broad category of tokens |
|
||||||
such as ``identifier'' or ``number'' and the third argument will |
|
||||||
be the name of the identifier or the value of the number.</p> |
|
||||||
|
|
||||||
<p>The Parse() function may have either three or four arguments, |
|
||||||
depending on the grammar. If the grammar specification file request |
|
||||||
it, the Parse() function will have a fourth parameter that can be |
|
||||||
of any type chosen by the programmer. The parser doesn't do anything |
|
||||||
with this argument except to pass it through to action routines. |
|
||||||
This is a convenient mechanism for passing state information down |
|
||||||
to the action routines without having to use global variables.</p> |
|
||||||
|
|
||||||
<p>A typical use of a Lemon parser might look something like the |
|
||||||
following: |
|
||||||
<pre> |
|
||||||
01 ParseTree *ParseFile(const char *zFilename){ |
|
||||||
02 Tokenizer *pTokenizer; |
|
||||||
03 void *pParser; |
|
||||||
04 Token sToken; |
|
||||||
05 int hTokenId; |
|
||||||
06 ParserState sState; |
|
||||||
07 |
|
||||||
08 pTokenizer = TokenizerCreate(zFilename); |
|
||||||
09 pParser = ParseAlloc( malloc ); |
|
||||||
10 InitParserState(&sState); |
|
||||||
11 while( GetNextToken(pTokenizer, &hTokenId, &sToken) ){ |
|
||||||
12 Parse(pParser, hTokenId, sToken, &sState); |
|
||||||
13 } |
|
||||||
14 Parse(pParser, 0, sToken, &sState); |
|
||||||
15 ParseFree(pParser, free ); |
|
||||||
16 TokenizerFree(pTokenizer); |
|
||||||
17 return sState.treeRoot; |
|
||||||
18 } |
|
||||||
</pre> |
|
||||||
This example shows a user-written routine that parses a file of |
|
||||||
text and returns a pointer to the parse tree. |
|
||||||
(We've omitted all error-handling from this example to keep it |
|
||||||
simple.) |
|
||||||
We assume the existence of some kind of tokenizer which is created |
|
||||||
using TokenizerCreate() on line 8 and deleted by TokenizerFree() |
|
||||||
on line 16. The GetNextToken() function on line 11 retrieves the |
|
||||||
next token from the input file and puts its type in the |
|
||||||
integer variable hTokenId. The sToken variable is assumed to be |
|
||||||
some kind of structure that contains details about each token, |
|
||||||
such as its complete text, what line it occurs on, etc. </p> |
|
||||||
|
|
||||||
<p>This example also assumes the existence of structure of type |
|
||||||
ParserState that holds state information about a particular parse. |
|
||||||
An instance of such a structure is created on line 6 and initialized |
|
||||||
on line 10. A pointer to this structure is passed into the Parse() |
|
||||||
routine as the optional 4th argument. |
|
||||||
The action routine specified by the grammar for the parser can use |
|
||||||
the ParserState structure to hold whatever information is useful and |
|
||||||
appropriate. In the example, we note that the treeRoot field of |
|
||||||
the ParserState structure is left pointing to the root of the parse |
|
||||||
tree.</p> |
|
||||||
|
|
||||||
<p>The core of this example as it relates to Lemon is as follows: |
|
||||||
<pre> |
|
||||||
ParseFile(){ |
|
||||||
pParser = ParseAlloc( malloc ); |
|
||||||
while( GetNextToken(pTokenizer,&hTokenId, &sToken) ){ |
|
||||||
Parse(pParser, hTokenId, sToken); |
|
||||||
} |
|
||||||
Parse(pParser, 0, sToken); |
|
||||||
ParseFree(pParser, free ); |
|
||||||
} |
|
||||||
</pre> |
|
||||||
Basically, what a program has to do to use a Lemon-generated parser |
|
||||||
is first create the parser, then send it lots of tokens obtained by |
|
||||||
tokenizing an input source. When the end of input is reached, the |
|
||||||
Parse() routine should be called one last time with a token type |
|
||||||
of 0. This step is necessary to inform the parser that the end of |
|
||||||
input has been reached. Finally, we reclaim memory used by the |
|
||||||
parser by calling ParseFree().</p> |
|
||||||
|
|
||||||
<p>There is one other interface routine that should be mentioned |
|
||||||
before we move on. |
|
||||||
The ParseTrace() function can be used to generate debugging output |
|
||||||
from the parser. A prototype for this routine is as follows: |
|
||||||
<pre> |
|
||||||
ParseTrace(FILE *stream, char *zPrefix); |
|
||||||
</pre> |
|
||||||
After this routine is called, a short (one-line) message is written |
|
||||||
to the designated output stream every time the parser changes states |
|
||||||
or calls an action routine. Each such message is prefaced using |
|
||||||
the text given by zPrefix. This debugging output can be turned off |
|
||||||
by calling ParseTrace() again with a first argument of NULL (0).</p> |
|
||||||
|
|
||||||
<h3>Differences With YACC and BISON</h3> |
|
||||||
|
|
||||||
<p>Programmers who have previously used the yacc or bison parser |
|
||||||
generator will notice several important differences between yacc and/or |
|
||||||
bison and Lemon. |
|
||||||
<ul> |
|
||||||
<li>In yacc and bison, the parser calls the tokenizer. In Lemon, |
|
||||||
the tokenizer calls the parser. |
|
||||||
<li>Lemon uses no global variables. Yacc and bison use global variables |
|
||||||
to pass information between the tokenizer and parser. |
|
||||||
<li>Lemon allows multiple parsers to be running simultaneously. Yacc |
|
||||||
and bison do not. |
|
||||||
</ul> |
|
||||||
These differences may cause some initial confusion for programmers |
|
||||||
with prior yacc and bison experience. |
|
||||||
But after years of experience using Lemon, I firmly |
|
||||||
believe that the Lemon way of doing things is better.</p> |
|
||||||
|
|
||||||
<h2>Input File Syntax</h2> |
|
||||||
|
|
||||||
<p>The main purpose of the grammar specification file for Lemon is |
|
||||||
to define the grammar for the parser. But the input file also |
|
||||||
specifies additional information Lemon requires to do its job. |
|
||||||
Most of the work in using Lemon is in writing an appropriate |
|
||||||
grammar file.</p> |
|
||||||
|
|
||||||
<p>The grammar file for lemon is, for the most part, free format. |
|
||||||
It does not have sections or divisions like yacc or bison. Any |
|
||||||
declaration can occur at any point in the file. |
|
||||||
Lemon ignores whitespace (except where it is needed to separate |
|
||||||
tokens) and it honors the same commenting conventions as C and C++.</p> |
|
||||||
|
|
||||||
<h3>Terminals and Nonterminals</h3> |
|
||||||
|
|
||||||
<p>A terminal symbol (token) is any string of alphanumeric |
|
||||||
and underscore characters |
|
||||||
that begins with an upper case letter. |
|
||||||
A terminal can contain lower class letters after the first character, |
|
||||||
but the usual convention is to make terminals all upper case. |
|
||||||
A nonterminal, on the other hand, is any string of alphanumeric |
|
||||||
and underscore characters than begins with a lower case letter. |
|
||||||
Again, the usual convention is to make nonterminals use all lower |
|
||||||
case letters.</p> |
|
||||||
|
|
||||||
<p>In Lemon, terminal and nonterminal symbols do not need to |
|
||||||
be declared or identified in a separate section of the grammar file. |
|
||||||
Lemon is able to generate a list of all terminals and nonterminals |
|
||||||
by examining the grammar rules, and it can always distinguish a |
|
||||||
terminal from a nonterminal by checking the case of the first |
|
||||||
character of the name.</p> |
|
||||||
|
|
||||||
<p>Yacc and bison allow terminal symbols to have either alphanumeric |
|
||||||
names or to be individual characters included in single quotes, like |
|
||||||
this: ')' or '$'. Lemon does not allow this alternative form for |
|
||||||
terminal symbols. With Lemon, all symbols, terminals and nonterminals, |
|
||||||
must have alphanumeric names.</p> |
|
||||||
|
|
||||||
<h3>Grammar Rules</h3> |
|
||||||
|
|
||||||
<p>The main component of a Lemon grammar file is a sequence of grammar |
|
||||||
rules. |
|
||||||
Each grammar rule consists of a nonterminal symbol followed by |
|
||||||
the special symbol ``::='' and then a list of terminals and/or nonterminals. |
|
||||||
The rule is terminated by a period. |
|
||||||
The list of terminals and nonterminals on the right-hand side of the |
|
||||||
rule can be empty. |
|
||||||
Rules can occur in any order, except that the left-hand side of the |
|
||||||
first rule is assumed to be the start symbol for the grammar (unless |
|
||||||
specified otherwise using the <tt>%start</tt> directive described below.) |
|
||||||
A typical sequence of grammar rules might look something like this: |
|
||||||
<pre> |
|
||||||
expr ::= expr PLUS expr. |
|
||||||
expr ::= expr TIMES expr. |
|
||||||
expr ::= LPAREN expr RPAREN. |
|
||||||
expr ::= VALUE. |
|
||||||
</pre> |
|
||||||
</p> |
|
||||||
|
|
||||||
<p>There is one non-terminal in this example, ``expr'', and five |
|
||||||
terminal symbols or tokens: ``PLUS'', ``TIMES'', ``LPAREN'', |
|
||||||
``RPAREN'' and ``VALUE''.</p> |
|
||||||
|
|
||||||
<p>Like yacc and bison, Lemon allows the grammar to specify a block |
|
||||||
of C code that will be executed whenever a grammar rule is reduced |
|
||||||
by the parser. |
|
||||||
In Lemon, this action is specified by putting the C code (contained |
|
||||||
within curly braces <tt>{...}</tt>) immediately after the |
|
||||||
period that closes the rule. |
|
||||||
For example: |
|
||||||
<pre> |
|
||||||
expr ::= expr PLUS expr. { printf("Doing an addition...\n"); } |
|
||||||
</pre> |
|
||||||
</p> |
|
||||||
|
|
||||||
<p>In order to be useful, grammar actions must normally be linked to |
|
||||||
their associated grammar rules. |
|
||||||
In yacc and bison, this is accomplished by embedding a ``$$'' in the |
|
||||||
action to stand for the value of the left-hand side of the rule and |
|
||||||
symbols ``$1'', ``$2'', and so forth to stand for the value of |
|
||||||
the terminal or nonterminal at position 1, 2 and so forth on the |
|
||||||
right-hand side of the rule. |
|
||||||
This idea is very powerful, but it is also very error-prone. The |
|
||||||
single most common source of errors in a yacc or bison grammar is |
|
||||||
to miscount the number of symbols on the right-hand side of a grammar |
|
||||||
rule and say ``$7'' when you really mean ``$8''.</p> |
|
||||||
|
|
||||||
<p>Lemon avoids the need to count grammar symbols by assigning symbolic |
|
||||||
names to each symbol in a grammar rule and then using those symbolic |
|
||||||
names in the action. |
|
||||||
In yacc or bison, one would write this: |
|
||||||
<pre> |
|
||||||
expr -> expr PLUS expr { $$ = $1 + $3; }; |
|
||||||
</pre> |
|
||||||
But in Lemon, the same rule becomes the following: |
|
||||||
<pre> |
|
||||||
expr(A) ::= expr(B) PLUS expr(C). { A = B+C; } |
|
||||||
</pre> |
|
||||||
In the Lemon rule, any symbol in parentheses after a grammar rule |
|
||||||
symbol becomes a place holder for that symbol in the grammar rule. |
|
||||||
This place holder can then be used in the associated C action to |
|
||||||
stand for the value of that symbol.<p> |
|
||||||
|
|
||||||
<p>The Lemon notation for linking a grammar rule with its reduce |
|
||||||
action is superior to yacc/bison on several counts. |
|
||||||
First, as mentioned above, the Lemon method avoids the need to |
|
||||||
count grammar symbols. |
|
||||||
Secondly, if a terminal or nonterminal in a Lemon grammar rule |
|
||||||
includes a linking symbol in parentheses but that linking symbol |
|
||||||
is not actually used in the reduce action, then an error message |
|
||||||
is generated. |
|
||||||
For example, the rule |
|
||||||
<pre> |
|
||||||
expr(A) ::= expr(B) PLUS expr(C). { A = B; } |
|
||||||
</pre> |
|
||||||
will generate an error because the linking symbol ``C'' is used |
|
||||||
in the grammar rule but not in the reduce action.</p> |
|
||||||
|
|
||||||
<p>The Lemon notation for linking grammar rules to reduce actions |
|
||||||
also facilitates the use of destructors for reclaiming memory |
|
||||||
allocated by the values of terminals and nonterminals on the |
|
||||||
right-hand side of a rule.</p> |
|
||||||
|
|
||||||
<h3>Precedence Rules</h3> |
|
||||||
|
|
||||||
<p>Lemon resolves parsing ambiguities in exactly the same way as |
|
||||||
yacc and bison. A shift-reduce conflict is resolved in favor |
|
||||||
of the shift, and a reduce-reduce conflict is resolved by reducing |
|
||||||
whichever rule comes first in the grammar file.</p> |
|
||||||
|
|
||||||
<p>Just like in |
|
||||||
yacc and bison, Lemon allows a measure of control |
|
||||||
over the resolution of paring conflicts using precedence rules. |
|
||||||
A precedence value can be assigned to any terminal symbol |
|
||||||
using the %left, %right or %nonassoc directives. Terminal symbols |
|
||||||
mentioned in earlier directives have a lower precedence that |
|
||||||
terminal symbols mentioned in later directives. For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%left AND. |
|
||||||
%left OR. |
|
||||||
%nonassoc EQ NE GT GE LT LE. |
|
||||||
%left PLUS MINUS. |
|
||||||
%left TIMES DIVIDE MOD. |
|
||||||
%right EXP NOT. |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>In the preceding sequence of directives, the AND operator is |
|
||||||
defined to have the lowest precedence. The OR operator is one |
|
||||||
precedence level higher. And so forth. Hence, the grammar would |
|
||||||
attempt to group the ambiguous expression |
|
||||||
<pre> |
|
||||||
a AND b OR c |
|
||||||
</pre> |
|
||||||
like this |
|
||||||
<pre> |
|
||||||
a AND (b OR c). |
|
||||||
</pre> |
|
||||||
The associativity (left, right or nonassoc) is used to determine |
|
||||||
the grouping when the precedence is the same. AND is left-associative |
|
||||||
in our example, so |
|
||||||
<pre> |
|
||||||
a AND b AND c |
|
||||||
</pre> |
|
||||||
is parsed like this |
|
||||||
<pre> |
|
||||||
(a AND b) AND c. |
|
||||||
</pre> |
|
||||||
The EXP operator is right-associative, though, so |
|
||||||
<pre> |
|
||||||
a EXP b EXP c |
|
||||||
</pre> |
|
||||||
is parsed like this |
|
||||||
<pre> |
|
||||||
a EXP (b EXP c). |
|
||||||
</pre> |
|
||||||
The nonassoc precedence is used for non-associative operators. |
|
||||||
So |
|
||||||
<pre> |
|
||||||
a EQ b EQ c |
|
||||||
</pre> |
|
||||||
is an error.</p> |
|
||||||
|
|
||||||
<p>The precedence of non-terminals is transferred to rules as follows: |
|
||||||
The precedence of a grammar rule is equal to the precedence of the |
|
||||||
left-most terminal symbol in the rule for which a precedence is |
|
||||||
defined. This is normally what you want, but in those cases where |
|
||||||
you want to precedence of a grammar rule to be something different, |
|
||||||
you can specify an alternative precedence symbol by putting the |
|
||||||
symbol in square braces after the period at the end of the rule and |
|
||||||
before any C-code. For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
expr = MINUS expr. [NOT] |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>This rule has a precedence equal to that of the NOT symbol, not the |
|
||||||
MINUS symbol as would have been the case by default.</p> |
|
||||||
|
|
||||||
<p>With the knowledge of how precedence is assigned to terminal |
|
||||||
symbols and individual |
|
||||||
grammar rules, we can now explain precisely how parsing conflicts |
|
||||||
are resolved in Lemon. Shift-reduce conflicts are resolved |
|
||||||
as follows: |
|
||||||
<ul> |
|
||||||
<li> If either the token to be shifted or the rule to be reduced |
|
||||||
lacks precedence information, then resolve in favor of the |
|
||||||
shift, but report a parsing conflict. |
|
||||||
<li> If the precedence of the token to be shifted is greater than |
|
||||||
the precedence of the rule to reduce, then resolve in favor |
|
||||||
of the shift. No parsing conflict is reported. |
|
||||||
<li> If the precedence of the token it be shifted is less than the |
|
||||||
precedence of the rule to reduce, then resolve in favor of the |
|
||||||
reduce action. No parsing conflict is reported. |
|
||||||
<li> If the precedences are the same and the shift token is |
|
||||||
right-associative, then resolve in favor of the shift. |
|
||||||
No parsing conflict is reported. |
|
||||||
<li> If the precedences are the same the the shift token is |
|
||||||
left-associative, then resolve in favor of the reduce. |
|
||||||
No parsing conflict is reported. |
|
||||||
<li> Otherwise, resolve the conflict by doing the shift and |
|
||||||
report the parsing conflict. |
|
||||||
</ul> |
|
||||||
Reduce-reduce conflicts are resolved this way: |
|
||||||
<ul> |
|
||||||
<li> If either reduce rule |
|
||||||
lacks precedence information, then resolve in favor of the |
|
||||||
rule that appears first in the grammar and report a parsing |
|
||||||
conflict. |
|
||||||
<li> If both rules have precedence and the precedence is different |
|
||||||
then resolve the dispute in favor of the rule with the highest |
|
||||||
precedence and do not report a conflict. |
|
||||||
<li> Otherwise, resolve the conflict by reducing by the rule that |
|
||||||
appears first in the grammar and report a parsing conflict. |
|
||||||
</ul> |
|
||||||
|
|
||||||
<h3>Special Directives</h3> |
|
||||||
|
|
||||||
<p>The input grammar to Lemon consists of grammar rules and special |
|
||||||
directives. We've described all the grammar rules, so now we'll |
|
||||||
talk about the special directives.</p> |
|
||||||
|
|
||||||
<p>Directives in lemon can occur in any order. You can put them before |
|
||||||
the grammar rules, or after the grammar rules, or in the mist of the |
|
||||||
grammar rules. It doesn't matter. The relative order of |
|
||||||
directives used to assign precedence to terminals is important, but |
|
||||||
other than that, the order of directives in Lemon is arbitrary.</p> |
|
||||||
|
|
||||||
<p>Lemon supports the following special directives: |
|
||||||
<ul> |
|
||||||
<li><tt>%destructor</tt> |
|
||||||
<li><tt>%extra_argument</tt> |
|
||||||
<li><tt>%include</tt> |
|
||||||
<li><tt>%left</tt> |
|
||||||
<li><tt>%name</tt> |
|
||||||
<li><tt>%nonassoc</tt> |
|
||||||
<li><tt>%parse_accept</tt> |
|
||||||
<li><tt>%parse_failure </tt> |
|
||||||
<li><tt>%right</tt> |
|
||||||
<li><tt>%stack_overflow</tt> |
|
||||||
<li><tt>%stack_size</tt> |
|
||||||
<li><tt>%start_symbol</tt> |
|
||||||
<li><tt>%syntax_error</tt> |
|
||||||
<li><tt>%token_destructor</tt> |
|
||||||
<li><tt>%token_prefix</tt> |
|
||||||
<li><tt>%token_type</tt> |
|
||||||
<li><tt>%type</tt> |
|
||||||
</ul> |
|
||||||
Each of these directives will be described separately in the |
|
||||||
following sections:</p> |
|
||||||
|
|
||||||
<h4>The <tt>%destructor</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %destructor directive is used to specify a destructor for |
|
||||||
a non-terminal symbol. |
|
||||||
(See also the %token_destructor directive which is used to |
|
||||||
specify a destructor for terminal symbols.)</p> |
|
||||||
|
|
||||||
<p>A non-terminal's destructor is called to dispose of the |
|
||||||
non-terminal's value whenever the non-terminal is popped from |
|
||||||
the stack. This includes all of the following circumstances: |
|
||||||
<ul> |
|
||||||
<li> When a rule reduces and the value of a non-terminal on |
|
||||||
the right-hand side is not linked to C code. |
|
||||||
<li> When the stack is popped during error processing. |
|
||||||
<li> When the ParseFree() function runs. |
|
||||||
</ul> |
|
||||||
The destructor can do whatever it wants with the value of |
|
||||||
the non-terminal, but its design is to deallocate memory |
|
||||||
or other resources held by that non-terminal.</p> |
|
||||||
|
|
||||||
<p>Consider an example: |
|
||||||
<pre> |
|
||||||
%type nt {void*} |
|
||||||
%destructor nt { free($$); } |
|
||||||
nt(A) ::= ID NUM. { A = malloc( 100 ); } |
|
||||||
</pre> |
|
||||||
This example is a bit contrived but it serves to illustrate how |
|
||||||
destructors work. The example shows a non-terminal named |
|
||||||
``nt'' that holds values of type ``void*''. When the rule for |
|
||||||
an ``nt'' reduces, it sets the value of the non-terminal to |
|
||||||
space obtained from malloc(). Later, when the nt non-terminal |
|
||||||
is popped from the stack, the destructor will fire and call |
|
||||||
free() on this malloced space, thus avoiding a memory leak. |
|
||||||
(Note that the symbol ``$$'' in the destructor code is replaced |
|
||||||
by the value of the non-terminal.)</p> |
|
||||||
|
|
||||||
<p>It is important to note that the value of a non-terminal is passed |
|
||||||
to the destructor whenever the non-terminal is removed from the |
|
||||||
stack, unless the non-terminal is used in a C-code action. If |
|
||||||
the non-terminal is used by C-code, then it is assumed that the |
|
||||||
C-code will take care of destroying it if it should really |
|
||||||
be destroyed. More commonly, the value is used to build some |
|
||||||
larger structure and we don't want to destroy it, which is why |
|
||||||
the destructor is not called in this circumstance.</p> |
|
||||||
|
|
||||||
<p>By appropriate use of destructors, it is possible to |
|
||||||
build a parser using Lemon that can be used within a long-running |
|
||||||
program, such as a GUI, that will not leak memory or other resources. |
|
||||||
To do the same using yacc or bison is much more difficult.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%extra_argument</tt> directive</h4> |
|
||||||
|
|
||||||
The %extra_argument directive instructs Lemon to add a 4th parameter |
|
||||||
to the parameter list of the Parse() function it generates. Lemon |
|
||||||
doesn't do anything itself with this extra argument, but it does |
|
||||||
make the argument available to C-code action routines, destructors, |
|
||||||
and so forth. For example, if the grammar file contains:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%extra_argument { MyStruct *pAbc } |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>Then the Parse() function generated will have an 4th parameter |
|
||||||
of type ``MyStruct*'' and all action routines will have access to |
|
||||||
a variable named ``pAbc'' that is the value of the 4th parameter |
|
||||||
in the most recent call to Parse().</p> |
|
||||||
|
|
||||||
<h4>The <tt>%include</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %include directive specifies C code that is included at the |
|
||||||
top of the generated parser. You can include any text you want -- |
|
||||||
the Lemon parser generator copies to blindly. If you have multiple |
|
||||||
%include directives in your grammar file, their values are concatenated |
|
||||||
before being put at the beginning of the generated parser.</p> |
|
||||||
|
|
||||||
<p>The %include directive is very handy for getting some extra #include |
|
||||||
preprocessor statements at the beginning of the generated parser. |
|
||||||
For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%include {#include <unistd.h>} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>This might be needed, for example, if some of the C actions in the |
|
||||||
grammar call functions that are prototyed in unistd.h.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%left</tt> directive</h4> |
|
||||||
|
|
||||||
The %left directive is used (along with the %right and |
|
||||||
%nonassoc directives) to declare precedences of terminal |
|
||||||
symbols. Every terminal symbol whose name appears after |
|
||||||
a %left directive but before the next period (``.'') is |
|
||||||
given the same left-associative precedence value. Subsequent |
|
||||||
%left directives have higher precedence. For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%left AND. |
|
||||||
%left OR. |
|
||||||
%nonassoc EQ NE GT GE LT LE. |
|
||||||
%left PLUS MINUS. |
|
||||||
%left TIMES DIVIDE MOD. |
|
||||||
%right EXP NOT. |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>Note the period that terminates each %left, %right or %nonassoc |
|
||||||
directive.</p> |
|
||||||
|
|
||||||
<p>LALR(1) grammars can get into a situation where they require |
|
||||||
a large amount of stack space if you make heavy use or right-associative |
|
||||||
operators. For this reason, it is recommended that you use %left |
|
||||||
rather than %right whenever possible.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%name</tt> directive</h4> |
|
||||||
|
|
||||||
<p>By default, the functions generated by Lemon all begin with the |
|
||||||
five-character string ``Parse''. You can change this string to something |
|
||||||
different using the %name directive. For instance:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%name Abcde |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>Putting this directive in the grammar file will cause Lemon to generate |
|
||||||
functions named |
|
||||||
<ul> |
|
||||||
<li> AbcdeAlloc(), |
|
||||||
<li> AbcdeFree(), |
|
||||||
<li> AbcdeTrace(), and |
|
||||||
<li> Abcde(). |
|
||||||
</ul> |
|
||||||
The %name directive allows you to generator two or more different |
|
||||||
parsers and link them all into the same executable. |
|
||||||
</p> |
|
||||||
|
|
||||||
<h4>The <tt>%nonassoc</tt> directive</h4> |
|
||||||
|
|
||||||
<p>This directive is used to assign non-associative precedence to |
|
||||||
one or more terminal symbols. See the section on precedence rules |
|
||||||
or on the %left directive for additional information.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%parse_accept</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %parse_accept directive specifies a block of C code that is |
|
||||||
executed whenever the parser accepts its input string. To ``accept'' |
|
||||||
an input string means that the parser was able to process all tokens |
|
||||||
without error.</p> |
|
||||||
|
|
||||||
<p>For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%parse_accept { |
|
||||||
printf("parsing complete!\n"); |
|
||||||
} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
|
|
||||||
<h4>The <tt>%parse_failure</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %parse_failure directive specifies a block of C code that |
|
||||||
is executed whenever the parser fails complete. This code is not |
|
||||||
executed until the parser has tried and failed to resolve an input |
|
||||||
error using is usual error recovery strategy. The routine is |
|
||||||
only invoked when parsing is unable to continue.</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%parse_failure { |
|
||||||
fprintf(stderr,"Giving up. Parser is hopelessly lost...\n"); |
|
||||||
} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<h4>The <tt>%right</tt> directive</h4> |
|
||||||
|
|
||||||
<p>This directive is used to assign right-associative precedence to |
|
||||||
one or more terminal symbols. See the section on precedence rules |
|
||||||
or on the %left directive for additional information.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%stack_overflow</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %stack_overflow directive specifies a block of C code that |
|
||||||
is executed if the parser's internal stack ever overflows. Typically |
|
||||||
this just prints an error message. After a stack overflow, the parser |
|
||||||
will be unable to continue and must be reset.</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%stack_overflow { |
|
||||||
fprintf(stderr,"Giving up. Parser stack overflow\n"); |
|
||||||
} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>You can help prevent parser stack overflows by avoiding the use |
|
||||||
of right recursion and right-precedence operators in your grammar. |
|
||||||
Use left recursion and and left-precedence operators instead, to |
|
||||||
encourage rules to reduce sooner and keep the stack size down. |
|
||||||
For example, do rules like this: |
|
||||||
<pre> |
|
||||||
list ::= list element. // left-recursion. Good! |
|
||||||
list ::= . |
|
||||||
</pre> |
|
||||||
Not like this: |
|
||||||
<pre> |
|
||||||
list ::= element list. // right-recursion. Bad! |
|
||||||
list ::= . |
|
||||||
</pre> |
|
||||||
|
|
||||||
<h4>The <tt>%stack_size</tt> directive</h4> |
|
||||||
|
|
||||||
<p>If stack overflow is a problem and you can't resolve the trouble |
|
||||||
by using left-recursion, then you might want to increase the size |
|
||||||
of the parser's stack using this directive. Put an positive integer |
|
||||||
after the %stack_size directive and Lemon will generate a parse |
|
||||||
with a stack of the requested size. The default value is 100.</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%stack_size 2000 |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<h4>The <tt>%start_symbol</tt> directive</h4> |
|
||||||
|
|
||||||
<p>By default, the start-symbol for the grammar that Lemon generates |
|
||||||
is the first non-terminal that appears in the grammar file. But you |
|
||||||
can choose a different start-symbol using the %start_symbol directive.</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%start_symbol prog |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<h4>The <tt>%token_destructor</tt> directive</h4> |
|
||||||
|
|
||||||
<p>The %destructor directive assigns a destructor to a non-terminal |
|
||||||
symbol. (See the description of the %destructor directive above.) |
|
||||||
This directive does the same thing for all terminal symbols.</p> |
|
||||||
|
|
||||||
<p>Unlike non-terminal symbols which may each have a different data type |
|
||||||
for their values, terminals all use the same data type (defined by |
|
||||||
the %token_type directive) and so they use a common destructor. Other |
|
||||||
than that, the token destructor works just like the non-terminal |
|
||||||
destructors.</p> |
|
||||||
|
|
||||||
<h4>The <tt>%token_prefix</tt> directive</h4> |
|
||||||
|
|
||||||
<p>Lemon generates #defines that assign small integer constants |
|
||||||
to each terminal symbol in the grammar. If desired, Lemon will |
|
||||||
add a prefix specified by this directive |
|
||||||
to each of the #defines it generates. |
|
||||||
So if the default output of Lemon looked like this: |
|
||||||
<pre> |
|
||||||
#define AND 1 |
|
||||||
#define MINUS 2 |
|
||||||
#define OR 3 |
|
||||||
#define PLUS 4 |
|
||||||
</pre> |
|
||||||
You can insert a statement into the grammar like this: |
|
||||||
<pre> |
|
||||||
%token_prefix TOKEN_ |
|
||||||
</pre> |
|
||||||
to cause Lemon to produce these symbols instead: |
|
||||||
<pre> |
|
||||||
#define TOKEN_AND 1 |
|
||||||
#define TOKEN_MINUS 2 |
|
||||||
#define TOKEN_OR 3 |
|
||||||
#define TOKEN_PLUS 4 |
|
||||||
</pre> |
|
||||||
|
|
||||||
<h4>The <tt>%token_type</tt> and <tt>%type</tt> directives</h4> |
|
||||||
|
|
||||||
<p>These directives are used to specify the data types for values |
|
||||||
on the parser's stack associated with terminal and non-terminal |
|
||||||
symbols. The values of all terminal symbols must be of the same |
|
||||||
type. This turns out to be the same data type as the 3rd parameter |
|
||||||
to the Parse() function generated by Lemon. Typically, you will |
|
||||||
make the value of a terminal symbol by a pointer to some kind of |
|
||||||
token structure. Like this:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%token_type {Token*} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>If the data type of terminals is not specified, the default value |
|
||||||
is ``int''.</p> |
|
||||||
|
|
||||||
<p>Non-terminal symbols can each have their own data types. Typically |
|
||||||
the data type of a non-terminal is a pointer to the root of a parse-tree |
|
||||||
structure that contains all information about that non-terminal. |
|
||||||
For example:</p> |
|
||||||
|
|
||||||
<p><pre> |
|
||||||
%type expr {Expr*} |
|
||||||
</pre></p> |
|
||||||
|
|
||||||
<p>Each entry on the parser's stack is actually a union containing |
|
||||||
instances of all data types for every non-terminal and terminal symbol. |
|
||||||
Lemon will automatically use the correct element of this union depending |
|
||||||
on what the corresponding non-terminal or terminal symbol is. But |
|
||||||
the grammar designer should keep in mind that the size of the union |
|
||||||
will be the size of its largest element. So if you have a single |
|
||||||
non-terminal whose data type requires 1K of storage, then your 100 |
|
||||||
entry parser stack will require 100K of heap space. If you are willing |
|
||||||
and able to pay that price, fine. You just need to know.</p> |
|
||||||
|
|
||||||
<h3>Error Processing</h3> |
|
||||||
|
|
||||||
<p>After extensive experimentation over several years, it has been |
|
||||||
discovered that the error recovery strategy used by yacc is about |
|
||||||
as good as it gets. And so that is what Lemon uses.</p> |
|
||||||
|
|
||||||
<p>When a Lemon-generated parser encounters a syntax error, it |
|
||||||
first invokes the code specified by the %syntax_error directive, if |
|
||||||
any. It then enters its error recovery strategy. The error recovery |
|
||||||
strategy is to begin popping the parsers stack until it enters a |
|
||||||
state where it is permitted to shift a special non-terminal symbol |
|
||||||
named ``error''. It then shifts this non-terminal and continues |
|
||||||
parsing. But the %syntax_error routine will not be called again |
|
||||||
until at least three new tokens have been successfully shifted.</p> |
|
||||||
|
|
||||||
<p>If the parser pops its stack until the stack is empty, and it still |
|
||||||
is unable to shift the error symbol, then the %parse_failed routine |
|
||||||
is invoked and the parser resets itself to its start state, ready |
|
||||||
to begin parsing a new file. This is what will happen at the very |
|
||||||
first syntax error, of course, if there are no instances of the |
|
||||||
``error'' non-terminal in your grammar.</p> |
|
||||||
|
|
||||||
</body> |
|
||||||
</html> |
|
@ -1,600 +0,0 @@ |
|||||||
/* Driver template for the LEMON parser generator.
|
|
||||||
** Copyright 1991-1995 by D. Richard Hipp. |
|
||||||
** |
|
||||||
** This library is free software; you can redistribute it and/or |
|
||||||
** modify it under the terms of the GNU Library General Public |
|
||||||
** License as published by the Free Software Foundation; either |
|
||||||
** version 2 of the License, or (at your option) any later version. |
|
||||||
**
|
|
||||||
** This library is distributed in the hope that it will be useful, |
|
||||||
** but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
||||||
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
||||||
** Library General Public License for more details. |
|
||||||
**
|
|
||||||
** You should have received a copy of the GNU Library General Public |
|
||||||
** License along with this library; if not, write to the |
|
||||||
** Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
|
||||||
** Boston, MA 02111-1307, USA. |
|
||||||
** |
|
||||||
** Modified 1997 to make it suitable for use with makeheaders. |
|
||||||
** |
|
||||||
** $IdPath$ |
|
||||||
*/ |
|
||||||
/* First off, code is include which follows the "include" declaration
|
|
||||||
** in the input file. */ |
|
||||||
#include <stdio.h> |
|
||||||
%% |
|
||||||
/* Next is all token values, in a form suitable for use by makeheaders.
|
|
||||||
** This section will be null unless lemon is run with the -m switch. |
|
||||||
*/ |
|
||||||
/*
|
|
||||||
** These constants (all generated automatically by the parser generator) |
|
||||||
** specify the various kinds of tokens (terminals) that the parser |
|
||||||
** understands.
|
|
||||||
** |
|
||||||
** Each symbol here is a terminal symbol in the grammar. |
|
||||||
*/ |
|
||||||
%% |
|
||||||
/* Make sure the INTERFACE macro is defined.
|
|
||||||
*/ |
|
||||||
#ifndef INTERFACE |
|
||||||
# define INTERFACE 1 |
|
||||||
#endif |
|
||||||
/* The next thing included is series of defines which control
|
|
||||||
** various aspects of the generated parser. |
|
||||||
** YYCODETYPE is the data type used for storing terminal |
|
||||||
** and nonterminal numbers. "unsigned char" is |
|
||||||
** used if there are fewer than 250 terminals |
|
||||||
** and nonterminals. "int" is used otherwise. |
|
||||||
** YYNOCODE is a number of type YYCODETYPE which corresponds |
|
||||||
** to no legal terminal or nonterminal number. This |
|
||||||
** number is used to fill in empty slots of the hash
|
|
||||||
** table. |
|
||||||
** YYACTIONTYPE is the data type used for storing terminal |
|
||||||
** and nonterminal numbers. "unsigned char" is |
|
||||||
** used if there are fewer than 250 rules and |
|
||||||
** states combined. "int" is used otherwise. |
|
||||||
** ParseTOKENTYPE is the data type used for minor tokens given
|
|
||||||
** directly to the parser from the tokenizer. |
|
||||||
** YYMINORTYPE is the data type used for all minor tokens. |
|
||||||
** This is typically a union of many types, one of |
|
||||||
** which is ParseTOKENTYPE. The entry in the union |
|
||||||
** for base tokens is called "yy0". |
|
||||||
** YYSTACKDEPTH is the maximum depth of the parser's stack. |
|
||||||
** ParseARGDECL is a declaration of a 3rd argument to the |
|
||||||
** parser, or null if there is no extra argument. |
|
||||||
** ParseKRARGDECL A version of ParseARGDECL for K&R C. |
|
||||||
** ParseANSIARGDECL A version of ParseARGDECL for ANSI C. |
|
||||||
** YYNSTATE the combined number of states. |
|
||||||
** YYNRULE the number of rules in the grammar |
|
||||||
** YYERRORSYMBOL is the code number of the error symbol. If not |
|
||||||
** defined, then do no error processing. |
|
||||||
*/ |
|
||||||
%% |
|
||||||
#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) |
|
||||||
#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) |
|
||||||
#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) |
|
||||||
/* Next is the action table. Each entry in this table contains
|
|
||||||
** |
|
||||||
** + An integer which is the number representing the look-ahead |
|
||||||
** token |
|
||||||
** |
|
||||||
** + An integer indicating what action to take. Number (N) between |
|
||||||
** 0 and YYNSTATE-1 mean shift the look-ahead and go to state N. |
|
||||||
** Numbers between YYNSTATE and YYNSTATE+YYNRULE-1 mean reduce by |
|
||||||
** rule N-YYNSTATE. Number YYNSTATE+YYNRULE means that a syntax |
|
||||||
** error has occurred. Number YYNSTATE+YYNRULE+1 means the parser |
|
||||||
** accepts its input. |
|
||||||
** |
|
||||||
** + A pointer to the next entry with the same hash value. |
|
||||||
** |
|
||||||
** The action table is really a series of hash tables. Each hash |
|
||||||
** table contains a number of entries which is a power of two. The |
|
||||||
** "state" table (which follows) contains information about the starting |
|
||||||
** point and size of each hash table. |
|
||||||
*/ |
|
||||||
struct yyActionEntry { |
|
||||||
YYCODETYPE lookahead; /* The value of the look-ahead token */ |
|
||||||
YYACTIONTYPE action; /* Action to take for this look-ahead */ |
|
||||||
struct yyActionEntry *next; /* Next look-ahead with the same hash, or NULL */ |
|
||||||
}; |
|
||||||
static struct yyActionEntry yyActionTable[] = { |
|
||||||
%% |
|
||||||
}; |
|
||||||
|
|
||||||
/* The state table contains information needed to look up the correct
|
|
||||||
** action in the action table, given the current state of the parser. |
|
||||||
** Information needed includes: |
|
||||||
** |
|
||||||
** + A pointer to the start of the action hash table in yyActionTable. |
|
||||||
** |
|
||||||
** + A mask used to hash the look-ahead token. The mask is an integer |
|
||||||
** which is one less than the size of the hash table.
|
|
||||||
** |
|
||||||
** + The default action. This is the action to take if no entry for |
|
||||||
** the given look-ahead is found in the action hash table. |
|
||||||
*/ |
|
||||||
struct yyStateEntry { |
|
||||||
struct yyActionEntry *hashtbl; /* Start of the hash table in yyActionTable */ |
|
||||||
int mask; /* Mask used for hashing the look-ahead */ |
|
||||||
YYACTIONTYPE actionDefault; /* Default action if look-ahead not found */ |
|
||||||
}; |
|
||||||
static struct yyStateEntry yyStateTable[] = { |
|
||||||
%% |
|
||||||
}; |
|
||||||
|
|
||||||
/* The following structure represents a single element of the
|
|
||||||
** parser's stack. Information stored includes: |
|
||||||
** |
|
||||||
** + The state number for the parser at this level of the stack. |
|
||||||
** |
|
||||||
** + The value of the token stored at this level of the stack. |
|
||||||
** (In other words, the "major" token.) |
|
||||||
** |
|
||||||
** + The semantic value stored at this level of the stack. This is |
|
||||||
** the information used by the action routines in the grammar. |
|
||||||
** It is sometimes called the "minor" token. |
|
||||||
*/ |
|
||||||
struct yyStackEntry { |
|
||||||
int stateno; /* The state-number */ |
|
||||||
int major; /* The major token value. This is the code
|
|
||||||
** number for the token at this stack level */ |
|
||||||
YYMINORTYPE minor; /* The user-supplied minor token value. This
|
|
||||||
** is the value of the token */ |
|
||||||
}; |
|
||||||
|
|
||||||
/* The state of the parser is completely contained in an instance of
|
|
||||||
** the following structure */ |
|
||||||
struct yyParser { |
|
||||||
int idx; /* Index of top element in stack */ |
|
||||||
int errcnt; /* Shifts left before out of the error */ |
|
||||||
struct yyStackEntry *top; /* Pointer to the top stack element */ |
|
||||||
struct yyStackEntry stack[YYSTACKDEPTH]; /* The parser's stack */ |
|
||||||
}; |
|
||||||
typedef struct yyParser yyParser; |
|
||||||
|
|
||||||
#ifndef NDEBUG |
|
||||||
#include <stdio.h> |
|
||||||
static FILE *yyTraceFILE = 0; |
|
||||||
static char *yyTracePrompt = 0; |
|
||||||
|
|
||||||
/*
|
|
||||||
** Turn parser tracing on by giving a stream to which to write the trace |
|
||||||
** and a prompt to preface each trace message. Tracing is turned off |
|
||||||
** by making either argument NULL
|
|
||||||
** |
|
||||||
** Inputs: |
|
||||||
** <ul> |
|
||||||
** <li> A FILE* to which trace output should be written. |
|
||||||
** If NULL, then tracing is turned off. |
|
||||||
** <li> A prefix string written at the beginning of every |
|
||||||
** line of trace output. If NULL, then tracing is |
|
||||||
** turned off. |
|
||||||
** </ul> |
|
||||||
** |
|
||||||
** Outputs: |
|
||||||
** None. |
|
||||||
*/ |
|
||||||
void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ |
|
||||||
yyTraceFILE = TraceFILE; |
|
||||||
yyTracePrompt = zTracePrompt; |
|
||||||
if( yyTraceFILE==0 ) yyTracePrompt = 0; |
|
||||||
else if( yyTracePrompt==0 ) yyTraceFILE = 0; |
|
||||||
} |
|
||||||
|
|
||||||
/* For tracing shifts, the names of all terminals and nonterminals
|
|
||||||
** are required. The following table supplies these names */ |
|
||||||
static char *yyTokenName[] = {
|
|
||||||
%% |
|
||||||
}; |
|
||||||
#define YYTRACE(X) if( yyTraceFILE ) fprintf(yyTraceFILE,"%sReduce [%s].\n",yyTracePrompt,X); |
|
||||||
#else |
|
||||||
#define YYTRACE(X) |
|
||||||
#endif |
|
||||||
|
|
||||||
/*
|
|
||||||
** This function allocates a new parser. |
|
||||||
** The only argument is a pointer to a function which works like |
|
||||||
** malloc. |
|
||||||
** |
|
||||||
** Inputs: |
|
||||||
** A pointer to the function used to allocate memory. |
|
||||||
** |
|
||||||
** Outputs: |
|
||||||
** A pointer to a parser. This pointer is used in subsequent calls |
|
||||||
** to Parse and ParseFree. |
|
||||||
*/ |
|
||||||
void *ParseAlloc(void *(*mallocProc)(size_t)){ |
|
||||||
yyParser *pParser; |
|
||||||
pParser = (yyParser*)(*mallocProc)( sizeof(yyParser) ); |
|
||||||
if( pParser ){ |
|
||||||
pParser->idx = -1; |
|
||||||
} |
|
||||||
return pParser; |
|
||||||
} |
|
||||||
|
|
||||||
/* The following function deletes the value associated with a
|
|
||||||
** symbol. The symbol can be either a terminal or nonterminal. |
|
||||||
** "yymajor" is the symbol code, and "yypminor" is a pointer to |
|
||||||
** the value. |
|
||||||
*/ |
|
||||||
static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){ |
|
||||||
switch( yymajor ){ |
|
||||||
/* Here is inserted the actions which take place when a
|
|
||||||
** terminal or non-terminal is destroyed. This can happen |
|
||||||
** when the symbol is popped from the stack during a |
|
||||||
** reduce or during error processing or when a parser is
|
|
||||||
** being destroyed before it is finished parsing. |
|
||||||
** |
|
||||||
** Note: during a reduce, the only symbols destroyed are those |
|
||||||
** which appear on the RHS of the rule, but which are not used |
|
||||||
** inside the C code. |
|
||||||
*/ |
|
||||||
%% |
|
||||||
default: break; /* If no destructor action specified: do nothing */ |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** Pop the parser's stack once. |
|
||||||
** |
|
||||||
** If there is a destructor routine associated with the token which |
|
||||||
** is popped from the stack, then call it. |
|
||||||
** |
|
||||||
** Return the major token number for the symbol popped. |
|
||||||
*/ |
|
||||||
static int yy_pop_parser_stack(yyParser *pParser){ |
|
||||||
YYCODETYPE yymajor; |
|
||||||
|
|
||||||
if( pParser->idx<0 ) return 0; |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE && pParser->idx>=0 ){ |
|
||||||
fprintf(yyTraceFILE,"%sPopping %s\n", |
|
||||||
yyTracePrompt, |
|
||||||
yyTokenName[pParser->top->major]); |
|
||||||
} |
|
||||||
#endif |
|
||||||
yymajor = pParser->top->major; |
|
||||||
yy_destructor( yymajor, &pParser->top->minor); |
|
||||||
pParser->idx--; |
|
||||||
pParser->top--; |
|
||||||
return yymajor; |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** Deallocate and destroy a parser. Destructors are all called for |
|
||||||
** all stack elements before shutting the parser down. |
|
||||||
** |
|
||||||
** Inputs: |
|
||||||
** <ul> |
|
||||||
** <li> A pointer to the parser. This should be a pointer |
|
||||||
** obtained from ParseAlloc. |
|
||||||
** <li> A pointer to a function used to reclaim memory obtained |
|
||||||
** from malloc. |
|
||||||
** </ul> |
|
||||||
*/ |
|
||||||
void ParseFree( |
|
||||||
void *p, /* The parser to be deleted */ |
|
||||||
void (*freeProc)(void*) /* Function used to reclaim memory */ |
|
||||||
){ |
|
||||||
yyParser *pParser = (yyParser*)p; |
|
||||||
if( pParser==0 ) return; |
|
||||||
while( pParser->idx>=0 ) yy_pop_parser_stack(pParser); |
|
||||||
(*freeProc)((void*)pParser); |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** Find the appropriate action for a parser given the look-ahead token. |
|
||||||
** |
|
||||||
** If the look-ahead token is YYNOCODE, then check to see if the action is |
|
||||||
** independent of the look-ahead. If it is, return the action, otherwise |
|
||||||
** return YY_NO_ACTION. |
|
||||||
*/ |
|
||||||
static int yy_find_parser_action( |
|
||||||
yyParser *pParser, /* The parser */ |
|
||||||
int iLookAhead /* The look-ahead token */ |
|
||||||
){ |
|
||||||
struct yyStateEntry *pState; /* Appropriate entry in the state table */ |
|
||||||
struct yyActionEntry *pAction; /* Action appropriate for the look-ahead */ |
|
||||||
|
|
||||||
/* if( pParser->idx<0 ) return YY_NO_ACTION; */ |
|
||||||
pState = &yyStateTable[pParser->top->stateno]; |
|
||||||
if( iLookAhead!=YYNOCODE ){ |
|
||||||
pAction = &pState->hashtbl[iLookAhead & pState->mask]; |
|
||||||
while( pAction ){ |
|
||||||
if( pAction->lookahead==iLookAhead ) return pAction->action; |
|
||||||
pAction = pAction->next; |
|
||||||
} |
|
||||||
}else if( pState->mask!=0 || pState->hashtbl->lookahead!=YYNOCODE ){ |
|
||||||
return YY_NO_ACTION; |
|
||||||
} |
|
||||||
return pState->actionDefault; |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** Perform a shift action. |
|
||||||
*/ |
|
||||||
static void yy_shift( |
|
||||||
yyParser *yypParser, /* The parser to be shifted */ |
|
||||||
int yyNewState, /* The new state to shift in */ |
|
||||||
int yyMajor, /* The major token to shift in */ |
|
||||||
YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */ |
|
||||||
){ |
|
||||||
yypParser->idx++; |
|
||||||
yypParser->top++; |
|
||||||
if( yypParser->idx>=YYSTACKDEPTH ){ |
|
||||||
yypParser->idx--; |
|
||||||
yypParser->top--; |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); |
|
||||||
} |
|
||||||
#endif |
|
||||||
while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); |
|
||||||
/* Here code is inserted which will execute if the parser
|
|
||||||
** stack every overflows */ |
|
||||||
%% |
|
||||||
return; |
|
||||||
} |
|
||||||
yypParser->top->stateno = yyNewState; |
|
||||||
yypParser->top->major = yyMajor; |
|
||||||
yypParser->top->minor = *yypMinor; |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE && yypParser->idx>0 ){ |
|
||||||
int i; |
|
||||||
fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); |
|
||||||
fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); |
|
||||||
for(i=1; i<=yypParser->idx; i++) |
|
||||||
fprintf(yyTraceFILE," %s",yyTokenName[yypParser->stack[i].major]); |
|
||||||
fprintf(yyTraceFILE,"\n"); |
|
||||||
} |
|
||||||
#endif |
|
||||||
} |
|
||||||
|
|
||||||
/* The following table contains information about every rule that
|
|
||||||
** is used during the reduce. |
|
||||||
*/ |
|
||||||
static struct { |
|
||||||
YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ |
|
||||||
unsigned char nrhs; /* Number of right-hand side symbols in the rule */ |
|
||||||
} yyRuleInfo[] = { |
|
||||||
%% |
|
||||||
}; |
|
||||||
|
|
||||||
static void yy_accept(yyParser * ParseANSIARGDECL); /* Forward Declaration */ |
|
||||||
|
|
||||||
/*
|
|
||||||
** Perform a reduce action and the shift that must immediately |
|
||||||
** follow the reduce. |
|
||||||
*/ |
|
||||||
static void yy_reduce( |
|
||||||
yyParser *yypParser, /* The parser */ |
|
||||||
int yyruleno /* Number of the rule by which to reduce */ |
|
||||||
ParseANSIARGDECL |
|
||||||
){ |
|
||||||
int yygoto; /* The next state */ |
|
||||||
int yyact; /* The next action */ |
|
||||||
YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ |
|
||||||
struct yyStackEntry *yymsp; /* The top of the parser's stack */ |
|
||||||
int yysize; /* Amount to pop the stack */ |
|
||||||
yymsp = yypParser->top; |
|
||||||
switch( yyruleno ){ |
|
||||||
/* Beginning here are the reduction cases. A typical example
|
|
||||||
** follows: |
|
||||||
** case 0: |
|
||||||
** YYTRACE("<text of the rule>"); |
|
||||||
** #line <lineno> <grammarfile> |
|
||||||
** { ... } // User supplied code
|
|
||||||
** #line <lineno> <thisfile> |
|
||||||
** break; |
|
||||||
*/ |
|
||||||
%% |
|
||||||
}; |
|
||||||
yygoto = yyRuleInfo[yyruleno].lhs; |
|
||||||
yysize = yyRuleInfo[yyruleno].nrhs; |
|
||||||
yypParser->idx -= yysize; |
|
||||||
yypParser->top -= yysize; |
|
||||||
yyact = yy_find_parser_action(yypParser,yygoto); |
|
||||||
if( yyact < YYNSTATE ){ |
|
||||||
yy_shift(yypParser,yyact,yygoto,&yygotominor); |
|
||||||
}else if( yyact == YYNSTATE + YYNRULE + 1 ){ |
|
||||||
yy_accept(yypParser ParseARGDECL); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** The following code executes when the parse fails |
|
||||||
*/ |
|
||||||
static void yy_parse_failed( |
|
||||||
yyParser *yypParser /* The parser */ |
|
||||||
ParseANSIARGDECL /* Extra arguments (if any) */ |
|
||||||
){ |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); |
|
||||||
} |
|
||||||
#endif |
|
||||||
while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); |
|
||||||
/* Here code is inserted which will be executed whenever the
|
|
||||||
** parser fails */ |
|
||||||
%% |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** The following code executes when a syntax error first occurs. |
|
||||||
*/ |
|
||||||
static void yy_syntax_error( |
|
||||||
yyParser *yypParser, /* The parser */ |
|
||||||
int yymajor, /* The major type of the error token */ |
|
||||||
YYMINORTYPE yyminor /* The minor type of the error token */ |
|
||||||
ParseANSIARGDECL /* Extra arguments (if any) */ |
|
||||||
){ |
|
||||||
#define TOKEN (yyminor.yy0) |
|
||||||
%% |
|
||||||
} |
|
||||||
|
|
||||||
/*
|
|
||||||
** The following is executed when the parser accepts |
|
||||||
*/ |
|
||||||
static void yy_accept( |
|
||||||
yyParser *yypParser /* The parser */ |
|
||||||
ParseANSIARGDECL /* Extra arguments (if any) */ |
|
||||||
){ |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); |
|
||||||
} |
|
||||||
#endif |
|
||||||
while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); |
|
||||||
/* Here code is inserted which will be executed whenever the
|
|
||||||
** parser accepts */ |
|
||||||
%% |
|
||||||
} |
|
||||||
|
|
||||||
/* The main parser program.
|
|
||||||
** The first argument is a pointer to a structure obtained from |
|
||||||
** "ParseAlloc" which describes the current state of the parser. |
|
||||||
** The second argument is the major token number. The third is |
|
||||||
** the minor token. The fourth optional argument is whatever the |
|
||||||
** user wants (and specified in the grammar) and is available for |
|
||||||
** use by the action routines. |
|
||||||
** |
|
||||||
** Inputs: |
|
||||||
** <ul> |
|
||||||
** <li> A pointer to the parser (an opaque structure.) |
|
||||||
** <li> The major token number. |
|
||||||
** <li> The minor token number. |
|
||||||
** <li> An option argument of a grammar-specified type. |
|
||||||
** </ul> |
|
||||||
** |
|
||||||
** Outputs: |
|
||||||
** None. |
|
||||||
*/ |
|
||||||
void Parse( |
|
||||||
void *yyp, /* The parser */ |
|
||||||
int yymajor, /* The major token code number */ |
|
||||||
ParseTOKENTYPE yyminor /* The value for the token */ |
|
||||||
ParseANSIARGDECL |
|
||||||
){ |
|
||||||
YYMINORTYPE yyminorunion; |
|
||||||
int yyact; /* The parser action. */ |
|
||||||
int yyendofinput; /* True if we are at the end of input */ |
|
||||||
int yyerrorhit = 0; /* True if yymajor has invoked an error */ |
|
||||||
yyParser *yypParser; /* The parser */ |
|
||||||
|
|
||||||
/* (re)initialize the parser, if necessary */ |
|
||||||
yypParser = (yyParser*)yyp; |
|
||||||
if( yypParser->idx<0 ){ |
|
||||||
if( yymajor==0 ) return; |
|
||||||
yypParser->idx = 0; |
|
||||||
yypParser->errcnt = -1; |
|
||||||
yypParser->top = &yypParser->stack[0]; |
|
||||||
yypParser->top->stateno = 0; |
|
||||||
yypParser->top->major = 0; |
|
||||||
} |
|
||||||
yyminorunion.yy0 = yyminor; |
|
||||||
yyendofinput = (yymajor==0); |
|
||||||
|
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); |
|
||||||
} |
|
||||||
#endif |
|
||||||
|
|
||||||
do{ |
|
||||||
yyact = yy_find_parser_action(yypParser,yymajor); |
|
||||||
if( yyact<YYNSTATE ){ |
|
||||||
yy_shift(yypParser,yyact,yymajor,&yyminorunion); |
|
||||||
yypParser->errcnt--; |
|
||||||
if( yyendofinput && yypParser->idx>=0 ){ |
|
||||||
yymajor = 0; |
|
||||||
}else{ |
|
||||||
yymajor = YYNOCODE; |
|
||||||
} |
|
||||||
}else if( yyact < YYNSTATE + YYNRULE ){ |
|
||||||
yy_reduce(yypParser,yyact-YYNSTATE ParseARGDECL); |
|
||||||
}else if( yyact == YY_ERROR_ACTION ){ |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); |
|
||||||
} |
|
||||||
#endif |
|
||||||
#ifdef YYERRORSYMBOL |
|
||||||
/* A syntax error has occurred.
|
|
||||||
** The response to an error depends upon whether or not the |
|
||||||
** grammar defines an error token "ERROR".
|
|
||||||
** |
|
||||||
** This is what we do if the grammar does define ERROR: |
|
||||||
** |
|
||||||
** * Call the %syntax_error function. |
|
||||||
** |
|
||||||
** * Begin popping the stack until we enter a state where |
|
||||||
** it is legal to shift the error symbol, then shift |
|
||||||
** the error symbol. |
|
||||||
** |
|
||||||
** * Set the error count to three. |
|
||||||
** |
|
||||||
** * Begin accepting and shifting new tokens. No new error |
|
||||||
** processing will occur until three tokens have been |
|
||||||
** shifted successfully. |
|
||||||
** |
|
||||||
*/ |
|
||||||
if( yypParser->errcnt<0 ){ |
|
||||||
yy_syntax_error(yypParser,yymajor,yyminorunion ParseARGDECL); |
|
||||||
} |
|
||||||
if( yypParser->top->major==YYERRORSYMBOL || yyerrorhit ){ |
|
||||||
#ifndef NDEBUG |
|
||||||
if( yyTraceFILE ){ |
|
||||||
fprintf(yyTraceFILE,"%sDiscard input token %s\n", |
|
||||||
yyTracePrompt,yyTokenName[yymajor]); |
|
||||||
} |
|
||||||
#endif |
|
||||||
yy_destructor(yymajor,&yyminorunion); |
|
||||||
yymajor = YYNOCODE; |
|
||||||
}else{ |
|
||||||
while( |
|
||||||
yypParser->idx >= 0 && |
|
||||||
yypParser->top->major != YYERRORSYMBOL && |
|
||||||
(yyact = yy_find_parser_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE |
|
||||||
){ |
|
||||||
yy_pop_parser_stack(yypParser); |
|
||||||
} |
|
||||||
if( yypParser->idx < 0 || yymajor==0 ){ |
|
||||||
yy_destructor(yymajor,&yyminorunion); |
|
||||||
yy_parse_failed(yypParser ParseARGDECL); |
|
||||||
yymajor = YYNOCODE; |
|
||||||
}else if( yypParser->top->major!=YYERRORSYMBOL ){ |
|
||||||
YYMINORTYPE u2; |
|
||||||
u2.YYERRSYMDT = 0; |
|
||||||
yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); |
|
||||||
} |
|
||||||
} |
|
||||||
yypParser->errcnt = 3; |
|
||||||
yyerrorhit = 1; |
|
||||||
#else /* YYERRORSYMBOL is not defined */ |
|
||||||
/* This is what we do if the grammar does not define ERROR:
|
|
||||||
** |
|
||||||
** * Report an error message, and throw away the input token. |
|
||||||
** |
|
||||||
** * If the input token is $, then fail the parse. |
|
||||||
** |
|
||||||
** As before, subsequent error messages are suppressed until |
|
||||||
** three input tokens have been successfully shifted. |
|
||||||
*/ |
|
||||||
if( yypParser->errcnt<=0 ){ |
|
||||||
yy_syntax_error(yypParser,yymajor,yyminorunion ParseARGDECL); |
|
||||||
} |
|
||||||
yypParser->errcnt = 3; |
|
||||||
yy_destructor(yymajor,&yyminorunion); |
|
||||||
if( yyendofinput ){ |
|
||||||
yy_parse_failed(yypParser ParseARGDECL); |
|
||||||
} |
|
||||||
yymajor = YYNOCODE; |
|
||||||
#endif |
|
||||||
}else{ |
|
||||||
yy_accept(yypParser ParseARGDECL); |
|
||||||
yymajor = YYNOCODE; |
|
||||||
} |
|
||||||
}while( yymajor!=YYNOCODE && yypParser->idx>=0 ); |
|
||||||
return; |
|
||||||
} |
|
Loading…
Reference in new issue