diff --git a/tools/lemon/.cvsignore b/tools/lemon/.cvsignore deleted file mode 100644 index bde2990b..00000000 --- a/tools/lemon/.cvsignore +++ /dev/null @@ -1 +0,0 @@ -lemon diff --git a/tools/lemon/Makefile.am b/tools/lemon/Makefile.am deleted file mode 100644 index 4fbe1a6c..00000000 --- a/tools/lemon/Makefile.am +++ /dev/null @@ -1,12 +0,0 @@ -# $IdPath$ -CFLAGS = @ANSI_CFLAGS@ - -noinst_PROGRAMS = lemon - -lemon_SOURCES = \ - lemon.c - -EXTRA_DIST = \ - lemon.html \ - lempar.c \ - README diff --git a/tools/lemon/README b/tools/lemon/README deleted file mode 100644 index 1fbbf3b7..00000000 --- a/tools/lemon/README +++ /dev/null @@ -1,14 +0,0 @@ -$IdPath$ -$Id: README,v 1.3 2002/04/12 04:12:11 peter Exp $ - -The Lemon Parser Generator's home page is: - -http://www.hwaci.com/sw/lemon/index.html - -The file in this directory, lemon.html, was obtained from: - -http://www.hwaci.com/sw/lemon/lemon.html - -lemon.c has been modified to include the t= and o= command-line -arguments. These changes are thanks to the FreeBSD project ports -collection. diff --git a/tools/lemon/lemon.c b/tools/lemon/lemon.c deleted file mode 100644 index 539a4be0..00000000 --- a/tools/lemon/lemon.c +++ /dev/null @@ -1,3954 +0,0 @@ -/* -** Copyright (c) 1991, 1994, 1997, 1998 D. Richard Hipp -** -** This file contains all sources (including headers) to the LEMON -** LALR(1) parser generator. The sources have been combined into a -** single file to make it easy to include LEMON as part of another -** program. -** -** This program is free software; you can redistribute it and/or -** modify it under the terms of the GNU General Public -** License as published by the Free Software Foundation; either -** version 2 of the License, or (at your option) any later version. -** -** This program is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -** General Public License for more details. -** -** You should have received a copy of the GNU General Public -** License along with this library; if not, write to the -** Free Software Foundation, Inc., 59 Temple Place - Suite 330, -** Boston, MA 02111-1307, USA. -** -** Author contact information: -** drh@acm.org -** http://www.hwaci.com/drh/ -** -** $IdPath$ -** $Id: lemon.c,v 1.6 2002/04/07 21:57:43 peter Exp $ -*/ -#include -#include -#include -#include -#include - -/* - * Wrapper around "isupper()", "islower()", etc. to cast the argument to - * "unsigned char", so that they at least handle non-ASCII 8-bit characters - * (and don't provoke a pile of warnings from GCC). - */ -#define safe_isupper(c) isupper((unsigned char)(c)) -#define safe_islower(c) islower((unsigned char)(c)) -#define safe_isalpha(c) isalpha((unsigned char)(c)) -#define safe_isalnum(c) isalnum((unsigned char)(c)) -#define safe_isspace(c) isspace((unsigned char)(c)) - -extern int access(const char *, int); - -#ifndef __WIN32__ -# if defined(_WIN32) || defined(WIN32) -# define __WIN32__ -# endif -#endif - -/* #define PRIVATE static */ -#define PRIVATE - -#ifdef TEST -#define MAXRHS 5 /* Set low to exercise exception code */ -#else -#define MAXRHS 1000 -#endif - -/********** From the file "struct.h" *************************************/ -/* -** Principal data structures for the LEMON parser generator. -*/ - -typedef enum {BOOL_FALSE=0, BOOL_TRUE} Boolean; - -/* Symbols (terminals and nonterminals) of the grammar are stored -** in the following: */ -struct symbol { - char *name; /* Name of the symbol */ - int index; /* Index number for this symbol */ - enum { - TERMINAL, - NONTERMINAL - } type; /* Symbols are all either TERMINALS or NTs */ - struct rule *rule; /* Linked list of rules of this (if an NT) */ - int prec; /* Precedence if defined (-1 otherwise) */ - enum e_assoc { - LEFT, - RIGHT, - NONE, - UNK - } assoc; /* Associativity if predecence is defined */ - char *firstset; /* First-set for all rules of this symbol */ - Boolean lambda; /* True if NT and can generate an empty string */ - char *destructor; /* Code which executes whenever this symbol is - ** popped from the stack during error processing */ - int destructorln; /* Line number of destructor code */ - char *datatype; /* The data type of information held by this - ** object. Only used if type==NONTERMINAL */ - int dtnum; /* The data type number. In the parser, the value - ** stack is a union. The .yy%d element of this - ** union is the correct data type for this object */ -}; - -/* Each production rule in the grammar is stored in the following -** structure. */ -struct rule { - struct symbol *lhs; /* Left-hand side of the rule */ - char *lhsalias; /* Alias for the LHS (NULL if none) */ - int ruleline; /* Line number for the rule */ - int nrhs; /* Number of RHS symbols */ - struct symbol **rhs; /* The RHS symbols */ - char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ - int line; /* Line number at which code begins */ - char *code; /* The code executed when this rule is reduced */ - struct symbol *precsym; /* Precedence symbol for this rule */ - int index; /* An index number for this rule */ - Boolean canReduce; /* True if this rule is ever reduced */ - struct rule *nextlhs; /* Next rule with the same LHS */ - struct rule *next; /* Next rule in the global list */ -}; - -/* A configuration is a production rule of the grammar together with -** a mark (dot) showing how much of that rule has been processed so far. -** Configurations also contain a follow-set which is a list of terminal -** symbols which are allowed to immediately follow the end of the rule. -** Every configuration is recorded as an instance of the following: */ -struct config { - struct rule *rp; /* The rule upon which the configuration is based */ - int dot; /* The parse point */ - char *fws; /* Follow-set for this configuration only */ - struct plink *fplp; /* Follow-set forward propagation links */ - struct plink *bplp; /* Follow-set backwards propagation links */ - struct state *stp; /* Pointer to state which contains this */ - enum { - COMPLETE, /* The status is used during followset and */ - INCOMPLETE /* shift computations */ - } status; - struct config *next; /* Next configuration in the state */ - struct config *bp; /* The next basis configuration */ -}; - -/* Every shift or reduce operation is stored as one of the following */ -struct action { - struct symbol *sp; /* The look-ahead symbol */ - enum e_action { - SHIFT, - ACCEPT, - REDUCE, - ERROR, - CONFLICT, /* Was a reduce, but part of a conflict */ - SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ - RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ - NOT_USED /* Deleted by compression */ - } type; - union { - struct state *stp; /* The new state, if a shift */ - struct rule *rp; /* The rule, if a reduce */ - } x; - struct action *next; /* Next action for this state */ - struct action *collide; /* Next action with the same hash */ -}; - -/* Each state of the generated parser's finite state machine -** is encoded as an instance of the following structure. */ -struct state { - struct config *bp; /* The basis configurations for this state */ - struct config *cfp; /* All configurations in this set */ - int index; /* Sequencial number for this state */ - struct action *ap; /* Array of actions for this state */ - unsigned int naction; /* Number of actions for this state */ - int tabstart; /* First index of the action table */ - int tabdfltact; /* Default action */ -}; - -/* A followset propagation link indicates that the contents of one -** configuration followset should be propagated to another whenever -** the first changes. */ -struct plink { - struct config *cfp; /* The configuration to which linked */ - struct plink *next; /* The next propagate link */ -}; - -/* The state vector for the entire parser generator is recorded as -** follows. (LEMON uses no global variables and makes little use of -** static variables. Fields in the following structure can be thought -** of as begin global variables in the program.) */ -struct lemon { - struct state **sorted; /* Table of states sorted by state number */ - struct rule *rule; /* List of all rules */ - int nstate; /* Number of states */ - int nrule; /* Number of rules */ - int nsymbol; /* Number of terminal and nonterminal symbols */ - int nterminal; /* Number of terminal symbols */ - struct symbol **symbols; /* Sorted array of pointers to symbols */ - int errorcnt; /* Number of errors */ - struct symbol *errsym; /* The error symbol */ - char *name; /* Name of the generated parser */ - char *arg; /* Declaration of the 3th argument to parser */ - char *tokentype; /* Type of terminal symbols in the parser stack */ - char *start; /* Name of the start symbol for the grammar */ - char *stacksize; /* Size of the parser stack */ - char *include; /* Code to put at the start of the C file */ - int includeln; /* Line number for start of include code */ - char *error; /* Code to execute when an error is seen */ - int errorln; /* Line number for start of error code */ - char *overflow; /* Code to execute on a stack overflow */ - int overflowln; /* Line number for start of overflow code */ - char *failure; /* Code to execute on parser failure */ - int failureln; /* Line number for start of failure code */ - char *accept; /* Code to execute when the parser excepts */ - int acceptln; /* Line number for the start of accept code */ - char *extracode; /* Code appended to the generated file */ - int extracodeln; /* Line number for the start of the extra code */ - char *tokendest; /* Code to execute to destroy token data */ - int tokendestln; /* Line number for token destroyer code */ - char *filename; /* Name of the input file */ - char *outname; /* Name of the current output file */ - char *tokenprefix; /* A prefix added to token names in the .h file */ - int nconflict; /* Number of parsing conflicts */ - int tablesize; /* Size of the parse tables */ - int basisflag; /* Print only basis configurations */ - char *argv0; /* Name of the program */ -}; - -#define MemoryCheck(X) if((X)==0){ \ - memory_error(); \ -} - -void memory_error(void); -char *msort(char *, char **, int (*)(const void *, const void *)); - -/******** From the file "action.h" *************************************/ -struct action *Action_new(void); -struct action *Action_sort(struct action *); -void Action_add(struct action **, enum e_action, struct symbol *, void *); - -/********* From the file "assert.h" ************************************/ -void myassert(const char *, int); -#ifndef NDEBUG -# define assert(X) if(!(X))myassert(__FILE__,__LINE__) -#else -# define assert(X) -#endif - -/********** From the file "build.h" ************************************/ -void FindRulePrecedences(struct lemon *); -void FindFirstSets(struct lemon *); -void FindStates(struct lemon *); -void FindLinks(struct lemon *); -void FindFollowSets(struct lemon *); -void FindActions(struct lemon *); - -/********* From the file "configlist.h" *********************************/ -void Configlist_init(void); -struct config *Configlist_add(struct rule *, int); -struct config *Configlist_addbasis(struct rule *, int); -void Configlist_closure(struct lemon *); -void Configlist_sort(void); -void Configlist_sortbasis(void); -struct config *Configlist_return(void); -struct config *Configlist_basis(void); -void Configlist_eat(struct config *); -void Configlist_reset(void); - -/********* From the file "error.h" ***************************************/ -#if __GNUC__ >= 2 -void ErrorMsg( const char *, int, const char *, ... ) - __attribute__((format (printf, 3, 4))); -#else -void ErrorMsg( const char *, int, const char *, ... ); -#endif - -/****** From the file "option.h" ******************************************/ -struct s_options { - enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, - OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type; - const char *label; - union { - void *val; - void (*fflag)(int); - void (*fint)(int); - void (*fdbl)(double); - void (*fstr)(const char *); - } arg; - const char *message; -}; -int OptInit(char**,struct s_options*,FILE*); -int OptNArgs(void); -char *OptArg(int); -void OptErr(int); -void OptPrint(void); - -/******** From the file "parse.h" *****************************************/ -void Parse(struct lemon *lemp); - -/********* From the file "plink.h" ***************************************/ -struct plink *Plink_new(void); -void Plink_add(struct plink **, struct config *); -void Plink_copy(struct plink **, struct plink *); -void Plink_delete(struct plink *); - -/********** From the file "report.h" *************************************/ -void Reprint(struct lemon *); -void ReportOutput(struct lemon *); -void ReportTable(struct lemon *, int); -void ReportHeader(struct lemon *); -void CompressTables(struct lemon *); - -/********** From the file "set.h" ****************************************/ -void SetSize(int N); /* All sets will be of size N */ -char *SetNew(void); /* A new set for element 0..N */ -void SetFree(char*); /* Deallocate a set */ -int SetAdd(char*,int); /* Add element to a set */ -int SetUnion(char *A,char *B); /* A <- A U B, thru element N */ - -#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ - -/**************** From the file "table.h" *********************************/ -/* -** All code in this file has been automatically generated -** from a specification in the file -** "table.q" -** by the associative array code building program "aagen". -** Do not edit this file! Instead, edit the specification -** file, then rerun aagen. -*/ -/* -** Code for processing tables in the LEMON parser generator. -*/ - -/* Routines for handling a strings */ - -char *Strsafe(const char *); - -void Strsafe_init(void); -int Strsafe_insert(char *); -char *Strsafe_find(const char *); - -/* Routines for handling symbols of the grammar */ - -struct symbol *Symbol_new(const char *x); -int Symbolcmpp(const void *, const void *); -void Symbol_init(void); -int Symbol_insert(struct symbol *, char *); -struct symbol *Symbol_find(const char *); -struct symbol *Symbol_Nth(int); -int Symbol_count(void); -struct symbol **Symbol_arrayof(void); - -/* Routines to manage the state table */ - -int Configcmp(const void *, const void *); -struct state *State_new(void); -void State_init(void); -int State_insert(struct state *, struct config *); -struct state *State_find(struct config *); -struct state **State_arrayof(void); - -/* Routines used for efficiency in Configlist_add */ - -void Configtable_init(void); -int Configtable_insert(struct config *); -struct config *Configtable_find(struct config *); -void Configtable_clear(int(*)(struct config *)); -/****************** From the file "action.c" *******************************/ -/* -** Routines processing parser actions in the LEMON parser generator. -*/ - -/* Allocate a new parser action */ -struct action *Action_new(void){ - static struct action *freelist = 0; - struct action *new; - - if( freelist==0 ){ - int i; - int amt = 100; - freelist = (struct action *)malloc( sizeof(struct action)*amt ); - if( freelist==0 ){ - fprintf(stderr,"Unable to allocate memory for a new parser action."); - exit(1); - } - for(i=0; inext; - return new; -} - -/* Compare two actions */ -static int actioncmp(const void *ap1_arg, const void *ap2_arg) -{ - const struct action *ap1 = ap1_arg, *ap2 = ap2_arg; - int rc; - rc = ap1->sp->index - ap2->sp->index; - if( rc==0 ) rc = (int)ap1->type - (int)ap2->type; - if( rc==0 ){ - assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT); - assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT); - rc = ap1->x.rp->index - ap2->x.rp->index; - } - return rc; -} - -/* Sort parser actions */ -struct action *Action_sort(struct action *ap) -{ - ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp); - return ap; -} - -void Action_add(struct action **app, enum e_action type, struct symbol *sp, - void *arg) -{ - struct action *new; - new = Action_new(); - new->next = *app; - *app = new; - new->type = type; - new->sp = sp; - if( type==SHIFT ){ - new->x.stp = (struct state *)arg; - }else{ - new->x.rp = (struct rule *)arg; - } -} -/********************** From the file "assert.c" ****************************/ -/* -** A more efficient way of handling assertions. -*/ -void myassert(const char *file, int line) -{ - fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file); - exit(1); -} -/********************** From the file "build.c" *****************************/ -/* -** Routines to construction the finite state machine for the LEMON -** parser generator. -*/ - -/* Find a precedence symbol of every rule in the grammar. -** -** Those rules which have a precedence symbol coded in the input -** grammar using the "[symbol]" construct will already have the -** rp->precsym field filled. Other rules take as their precedence -** symbol the first RHS symbol with a defined precedence. If there -** are not RHS symbols with a defined precedence, the precedence -** symbol field is left blank. -*/ -void FindRulePrecedences(struct lemon *xp) -{ - struct rule *rp; - for(rp=xp->rule; rp; rp=rp->next){ - if( rp->precsym==0 ){ - int i; - for(i=0; inrhs; i++){ - if( rp->rhs[i]->prec>=0 ){ - rp->precsym = rp->rhs[i]; - break; - } - } - } - } - return; -} - -/* Find all nonterminals which will generate the empty string. -** Then go back and compute the first sets of every nonterminal. -** The first set is the set of all terminal symbols which can begin -** a string generated by that nonterminal. -*/ -void FindFirstSets(struct lemon *lemp) -{ - int i; - struct rule *rp; - int progress; - - for(i=0; insymbol; i++){ - lemp->symbols[i]->lambda = BOOL_FALSE; - } - for(i=lemp->nterminal; insymbol; i++){ - lemp->symbols[i]->firstset = SetNew(); - } - - /* First compute all lambdas */ - do{ - progress = 0; - for(rp=lemp->rule; rp; rp=rp->next){ - if( rp->lhs->lambda ) continue; - for(i=0; inrhs; i++){ - if( rp->rhs[i]->lambda==BOOL_FALSE ) break; - } - if( i==rp->nrhs ){ - rp->lhs->lambda = BOOL_TRUE; - progress = 1; - } - } - }while( progress ); - - /* Now compute all first sets */ - do{ - struct symbol *s1, *s2; - progress = 0; - for(rp=lemp->rule; rp; rp=rp->next){ - s1 = rp->lhs; - for(i=0; inrhs; i++){ - s2 = rp->rhs[i]; - if( s2->type==TERMINAL ){ - progress += SetAdd(s1->firstset,s2->index); - break; - }else if( s1==s2 ){ - if( s1->lambda==BOOL_FALSE ) break; - }else{ - progress += SetUnion(s1->firstset,s2->firstset); - if( s2->lambda==BOOL_FALSE ) break; - } - } - } - }while( progress ); - return; -} - -/* Compute all LR(0) states for the grammar. Links -** are added to between some states so that the LR(1) follow sets -** can be computed later. -*/ -PRIVATE struct state *getstate(struct lemon *); /* forward reference */ -void FindStates(lemp) -struct lemon *lemp; -{ - struct symbol *sp; - struct rule *rp; - - Configlist_init(); - - /* Find the start symbol */ - if( lemp->start ){ - sp = Symbol_find(lemp->start); - if( sp==0 ){ - ErrorMsg(lemp->filename,0, -"The specified start symbol \"%s\" is not \ -in a nonterminal of the grammar. \"%s\" will be used as the start \ -symbol instead.",lemp->start,lemp->rule->lhs->name); - lemp->errorcnt++; - sp = lemp->rule->lhs; - } - }else{ - sp = lemp->rule->lhs; - } - - /* Make sure the start symbol doesn't occur on the right-hand side of - ** any rule. Report an error if it does. (YACC would generate a new - ** start symbol in this case.) */ - for(rp=lemp->rule; rp; rp=rp->next){ - int i; - for(i=0; inrhs; i++){ - if( rp->rhs[i]==sp ){ - ErrorMsg(lemp->filename,0, -"The start symbol \"%s\" occurs on the \ -right-hand side of a rule. This will result in a parser which \ -does not work properly.",sp->name); - lemp->errorcnt++; - } - } - } - - /* The basis configuration set for the first state - ** is all rules which have the start symbol as their - ** left-hand side */ - for(rp=sp->rule; rp; rp=rp->nextlhs){ - struct config *newcfp; - newcfp = Configlist_addbasis(rp,0); - SetAdd(newcfp->fws,0); - } - - /* Compute the first state. All other states will be - ** computed automatically during the computation of the first one. - ** The returned pointer to the first state is not used. */ - (void)getstate(lemp); - return; -} - -/* Return a pointer to a state which is described by the configuration -** list which has been built from calls to Configlist_add. -*/ -PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ -PRIVATE struct state *getstate(struct lemon *lemp) -{ - struct config *cfp, *bp; - struct state *stp; - - /* Extract the sorted basis of the new state. The basis was constructed - ** by prior calls to "Configlist_addbasis()". */ - Configlist_sortbasis(); - bp = Configlist_basis(); - - /* Get a state with the same basis */ - stp = State_find(bp); - if( stp ){ - /* A state with the same basis already exists! Copy all the follow-set - ** propagation links from the state under construction into the - ** preexisting state, then return a pointer to the preexisting state */ - struct config *x, *y; - for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ - Plink_copy(&y->bplp,x->bplp); - Plink_delete(x->fplp); - x->fplp = x->bplp = 0; - } - cfp = Configlist_return(); - Configlist_eat(cfp); - }else{ - /* This really is a new state. Construct all the details */ - Configlist_closure(lemp); /* Compute the configuration closure */ - Configlist_sort(); /* Sort the configuration closure */ - cfp = Configlist_return(); /* Get a pointer to the config list */ - stp = State_new(); /* A new state structure */ - MemoryCheck(stp); - stp->bp = bp; /* Remember the configuration basis */ - stp->cfp = cfp; /* Remember the configuration closure */ - stp->index = lemp->nstate++; /* Every state gets a sequence number */ - stp->ap = 0; /* No actions, yet. */ - State_insert(stp,stp->bp); /* Add to the state table */ - buildshifts(lemp,stp); /* Recursively compute successor states */ - } - return stp; -} - -/* Construct all successor states to the given state. A "successor" -** state is any state which can be reached by a shift action. -*/ -PRIVATE void buildshifts( - struct lemon *lemp, - struct state *stp) /* The state from which successors are computed */ -{ - struct config *cfp; /* For looping thru the config closure of "stp" */ - struct config *bcfp; /* For the inner loop on config closure of "stp" */ - struct config *new; /* */ - struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ - struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ - struct state *newstp; /* A pointer to a successor state */ - - /* Each configuration becomes complete after it contibutes to a successor - ** state. Initially, all configurations are incomplete */ - for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; - - /* Loop through all configurations of the state "stp" */ - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ - if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ - Configlist_reset(); /* Reset the new config set */ - sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ - - /* For every configuration in the state "stp" which has the symbol "sp" - ** following its dot, add the same configuration to the basis set under - ** construction but with the dot shifted one symbol to the right. */ - for(bcfp=cfp; bcfp; bcfp=bcfp->next){ - if( bcfp->status==COMPLETE ) continue; /* Already used */ - if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ - bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ - if( bsp!=sp ) continue; /* Must be same as for "cfp" */ - bcfp->status = COMPLETE; /* Mark this config as used */ - new = Configlist_addbasis(bcfp->rp,bcfp->dot+1); - Plink_add(&new->bplp,bcfp); - } - - /* Get a pointer to the state described by the basis configuration set - ** constructed in the preceding loop */ - newstp = getstate(lemp); - - /* The state "newstp" is reached from the state "stp" by a shift action - ** on the symbol "sp" */ - Action_add(&stp->ap,SHIFT,sp,newstp); - } -} - -/* -** Construct the propagation links -*/ -void FindLinks(struct lemon *lemp) -{ - int i; - struct config *cfp, *other; - struct state *stp; - struct plink *plp; - - /* Housekeeping detail: - ** Add to every propagate link a pointer back to the state to - ** which the link is attached. */ - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - cfp->stp = stp; - } - } - - /* Convert all backlinks into forward links. Only the forward - ** links are used in the follow-set computation. */ - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ - for(plp=cfp->bplp; plp; plp=plp->next){ - other = plp->cfp; - Plink_add(&other->fplp,cfp); - } - } - } -} - -/* Compute all followsets. -** -** A followset is the set of all symbols which can come immediately -** after a configuration. -*/ -void FindFollowSets(struct lemon *lemp) -{ - int i; - struct config *cfp; - struct plink *plp; - int progress; - int change; - - for(i=0; instate; i++){ - for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ - cfp->status = INCOMPLETE; - } - } - - do{ - progress = 0; - for(i=0; instate; i++){ - for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ - if( cfp->status==COMPLETE ) continue; - for(plp=cfp->fplp; plp; plp=plp->next){ - change = SetUnion(plp->cfp->fws,cfp->fws); - if( change ){ - plp->cfp->status = INCOMPLETE; - progress = 1; - } - } - cfp->status = COMPLETE; - } - } - }while( progress ); -} - -static int resolve_conflict(struct action *, struct action *, struct symbol *); - -/* Compute the reduce actions, and resolve conflicts. -*/ -void FindActions(struct lemon *lemp) -{ - int i,j; - struct config *cfp; - struct state *stp; - struct symbol *sp; - struct rule *rp; - - /* Add all of the reduce actions - ** A reduce action is added for each element of the followset of - ** a configuration which has its dot at the extreme right. - */ - for(i=0; instate; i++){ /* Loop over all states */ - stp = lemp->sorted[i]; - for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ - if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ - for(j=0; jnterminal; j++){ - if( SetFind(cfp->fws,j) ){ - /* Add a reduce action to the state "stp" which will reduce by the - ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ - Action_add(&stp->ap,REDUCE,lemp->symbols[j],cfp->rp); - } - } - } - } - } - - /* Add the accepting token */ - if( lemp->start ){ - sp = Symbol_find(lemp->start); - if( sp==0 ) sp = lemp->rule->lhs; - }else{ - sp = lemp->rule->lhs; - } - /* Add to the first state (which is always the starting state of the - ** finite state machine) an action to ACCEPT if the lookahead is the - ** start nonterminal. */ - Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); - - /* Resolve conflicts */ - for(i=0; instate; i++){ - struct action *ap, *nap; - struct state *stp2; - stp2 = lemp->sorted[i]; - assert( stp2->ap ); - stp2->ap = Action_sort(stp2->ap); - for(ap=stp2->ap; ap && ap->next; ap=nap){ - for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ - /* The two actions "ap" and "nap" have the same lookahead. - ** Figure out which one should be used */ - lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym); - } - } - } - - /* Report an error for each rule that can never be reduced. */ - for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = BOOL_FALSE; - for(i=0; instate; i++){ - struct action *ap; - for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ - if( ap->type==REDUCE ) ap->x.rp->canReduce = BOOL_TRUE; - } - } - for(rp=lemp->rule; rp; rp=rp->next){ - if( rp->canReduce ) continue; - ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); - lemp->errorcnt++; - } -} - -/* Resolve a conflict between the two given actions. If the -** conflict can't be resolve, return non-zero. -** -** NO LONGER TRUE: -** To resolve a conflict, first look to see if either action -** is on an error rule. In that case, take the action which -** is not associated with the error rule. If neither or both -** actions are associated with an error rule, then try to -** use precedence to resolve the conflict. -** -** If either action is a SHIFT, then it must be apx. This -** function won't work if apx->type==REDUCE and apy->type==SHIFT. -*/ -static int resolve_conflict( - struct action *apx, - struct action *apy, - struct symbol *errsym) /* The error symbol (if defined. NULL otherwise) */ -{ - struct symbol *spx, *spy; - int errcnt = 0; - assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ - if( apx->type==SHIFT && apy->type==REDUCE ){ - spx = apx->sp; - spy = apy->x.rp->precsym; - if( spy==0 || spx->prec<0 || spy->prec<0 ){ - /* Not enough precedence information. */ - apy->type = CONFLICT; - errcnt++; - }else if( spx->prec>spy->prec ){ /* Lower precedence wins */ - apy->type = RD_RESOLVED; - }else if( spx->precprec ){ - apx->type = SH_RESOLVED; - }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ - apy->type = RD_RESOLVED; /* associativity */ - }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ - apx->type = SH_RESOLVED; - }else{ - assert( spx->prec==spy->prec && spx->assoc==NONE ); - apy->type = CONFLICT; - errcnt++; - } - }else if( apx->type==REDUCE && apy->type==REDUCE ){ - spx = apx->x.rp->precsym; - spy = apy->x.rp->precsym; - if( spx==0 || spy==0 || spx->prec<0 || - spy->prec<0 || spx->prec==spy->prec ){ - apy->type = CONFLICT; - errcnt++; - }else if( spx->prec>spy->prec ){ - apy->type = RD_RESOLVED; - }else if( spx->precprec ){ - apx->type = RD_RESOLVED; - } - }else{ - /* Can't happen. Shifts have to come before Reduces on the - ** list because the reduces were added last. Hence, if apx->type==REDUCE - ** then it is impossible for apy->type==SHIFT */ - } - return errcnt; -} -/********************* From the file "configlist.c" *************************/ -/* -** Routines to processing a configuration list and building a state -** in the LEMON parser generator. -*/ - -static struct config *freelist = 0; /* List of free configurations */ -static struct config *current = 0; /* Top of list of configurations */ -static struct config **currentend = 0; /* Last on list of configs */ -static struct config *basis = 0; /* Top of list of basis configs */ -static struct config **basisend = 0; /* End of list of basis configs */ - -struct config *newconfig(void); -void deleteconfig(struct config *); - -/* Return a pointer to a new configuration */ -PRIVATE struct config *newconfig(void){ - struct config *new; - if( freelist==0 ){ - int i; - int amt = 3; - freelist = (struct config *)malloc( sizeof(struct config)*amt ); - if( freelist==0 ){ - fprintf(stderr,"Unable to allocate memory for a new configuration."); - exit(1); - } - for(i=0; inext; - return new; -} - -/* The configuration "old" is no longer used */ -PRIVATE void deleteconfig(struct config *old) -{ - old->next = freelist; - freelist = old; -} - -/* Initialized the configuration list builder */ -void Configlist_init(void){ - current = 0; - currentend = ¤t; - basis = 0; - basisend = &basis; - Configtable_init(); - return; -} - -/* Initialized the configuration list builder */ -void Configlist_reset(void){ - current = 0; - currentend = ¤t; - basis = 0; - basisend = &basis; - Configtable_clear(0); - return; -} - -/* Add another configuration to the configuration list */ -struct config *Configlist_add( - struct rule *rp, /* The rule */ - int dot) /* Index into the RHS of the rule where the dot goes */ -{ - struct config *cfp, model; - - assert( currentend!=0 ); - model.rp = rp; - model.dot = dot; - cfp = Configtable_find(&model); - if( cfp==0 ){ - cfp = newconfig(); - cfp->rp = rp; - cfp->dot = dot; - cfp->fws = SetNew(); - cfp->stp = 0; - cfp->fplp = cfp->bplp = 0; - cfp->next = 0; - cfp->bp = 0; - *currentend = cfp; - currentend = &cfp->next; - Configtable_insert(cfp); - } - return cfp; -} - -/* Add a basis configuration to the configuration list */ -struct config *Configlist_addbasis(struct rule *rp, int dot) -{ - struct config *cfp, model; - - assert( basisend!=0 ); - assert( currentend!=0 ); - model.rp = rp; - model.dot = dot; - cfp = Configtable_find(&model); - if( cfp==0 ){ - cfp = newconfig(); - cfp->rp = rp; - cfp->dot = dot; - cfp->fws = SetNew(); - cfp->stp = 0; - cfp->fplp = cfp->bplp = 0; - cfp->next = 0; - cfp->bp = 0; - *currentend = cfp; - currentend = &cfp->next; - *basisend = cfp; - basisend = &cfp->bp; - Configtable_insert(cfp); - } - return cfp; -} - -/* Compute the closure of the configuration list */ -void Configlist_closure(struct lemon *lemp) -{ - struct config *cfp, *newcfp; - struct rule *rp, *newrp; - struct symbol *sp, *xsp; - int i, dot; - - assert( currentend!=0 ); - for(cfp=current; cfp; cfp=cfp->next){ - rp = cfp->rp; - dot = cfp->dot; - if( dot>=rp->nrhs ) continue; - sp = rp->rhs[dot]; - if( sp->type==NONTERMINAL ){ - if( sp->rule==0 && sp!=lemp->errsym ){ - ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", - sp->name); - lemp->errorcnt++; - } - for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ - newcfp = Configlist_add(newrp,0); - for(i=dot+1; inrhs; i++){ - xsp = rp->rhs[i]; - if( xsp->type==TERMINAL ){ - SetAdd(newcfp->fws,xsp->index); - break; - }else{ - SetUnion(newcfp->fws,xsp->firstset); - if( xsp->lambda==BOOL_FALSE ) break; - } - } - if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); - } - } - } - return; -} - -/* Sort the configuration list */ -void Configlist_sort(void){ - current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); - currentend = 0; - return; -} - -/* Sort the basis configuration list */ -void Configlist_sortbasis(void){ - basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); - basisend = 0; - return; -} - -/* Return a pointer to the head of the configuration list and -** reset the list */ -struct config *Configlist_return(void){ - struct config *old; - old = current; - current = 0; - currentend = 0; - return old; -} - -/* Return a pointer to the head of the configuration list and -** reset the list */ -struct config *Configlist_basis(void){ - struct config *old; - old = basis; - basis = 0; - basisend = 0; - return old; -} - -/* Free all elements of the given configuration list */ -void Configlist_eat(struct config *cfp) -{ - struct config *nextcfp; - for(; cfp; cfp=nextcfp){ - nextcfp = cfp->next; - assert( cfp->fplp==0 ); - assert( cfp->bplp==0 ); - if( cfp->fws ) SetFree(cfp->fws); - deleteconfig(cfp); - } - return; -} -/***************** From the file "error.c" *********************************/ -/* -** Code for printing error message. -*/ - -/* Find a good place to break "msg" so that its length is at least "min" -** but no more than "max". Make the point as close to max as possible. -*/ -static int findbreak(char *msg, int min, int max) -{ - int i,spot; - char c; - for(i=spot=min; i<=max; i++){ - c = msg[i]; - if( c=='\t' ) msg[i] = ' '; - if( c=='\n' ){ msg[i] = ' '; spot = i; break; } - if( c==0 ){ spot = i; break; } - if( c=='-' && i0 ){ - sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno); - }else{ - sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename); - } - prefixsize = strlen(prefix); - availablewidth = LINEWIDTH - prefixsize; - - /* Generate the error message */ - vsprintf(errmsg,format,ap); - va_end(ap); - errmsgsize = strlen(errmsg); - /* Remove trailing '\n's from the error message. */ - while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){ - errmsg[--errmsgsize] = 0; - } - - /* Print the error message */ - base = 0; - while( errmsg[base]!=0 ){ - end = restart = findbreak(&errmsg[base],0,availablewidth); - restart += base; - while( errmsg[restart]==' ' ) restart++; - fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]); - base = restart; - } -} -/**************** From the file "main.c" ************************************/ -/* -** Main program file for the LEMON parser generator. -*/ - -void setlempar(const char *); -void setoutput(const char *); - -/* Report an out-of-memory condition and abort. This function -** is used mostly by the "MemoryCheck" macro in struct.h -*/ -void memory_error(void){ - fprintf(stderr,"Out of memory. Aborting...\n"); - exit(1); -} - -static const char *lempar_locations[] = { - NULL, "lempar.c" -}; - -void setlempar(const char *lempar) -{ - if (access(lempar, 004)) { - perror(lempar); - exit(1); - } - lempar_locations[0] = lempar; -} - -static char *output_file = NULL; - -void setoutput(const char *base) -{ - if ((output_file = malloc(strlen(base) + 1))) - sprintf(output_file, "%s.", base); -} - -/* The main program. Parse the command line and do it... */ -int main(int argc, char **argv) -{ - static int version = 0; - static int rpflag = 0; - static int basisflag = 0; - static int compress = 0; - static int quiet = 0; - static int statistics = 0; - static int mhflag = 0; - static struct s_options options[] = { - {OPT_FLAG, "b", {&basisflag}, "Print only the basis in report."}, - {OPT_FLAG, "c", {&compress}, "Don't compress the action table."}, - {OPT_FLAG, "g", {&rpflag}, "Print grammar without actions."}, - {OPT_FLAG, "m", {&mhflag}, "Output a makeheaders compatible file."}, - {OPT_FSTR, "o", {0}, "Set the dirname/basename for the output file(s)."}, - {OPT_FLAG, "q", {&quiet}, "(Quiet) Don't print the report file."}, - {OPT_FLAG, "s", {&statistics}, "Print parser stats to standard output."}, - {OPT_FSTR, "t", {0}, "An alternative template -- instead of " - "\"./lempar.c\"."}, - {OPT_FLAG, "x", {&version}, "Print the version number."}, - {OPT_FLAG,0,{0},0} - }; - int i; - struct lemon lem; - - /* Initialize function union members of options array */ - options[4].arg.fstr = setoutput; - options[7].arg.fstr = setlempar; - - OptInit(argv,options,stderr); - if( version ){ - printf("Lemon version 1.0\n" - "Copyright 1991-1997 by D. Richard Hipp\n" - "Freely distributable under the GNU Public License.\n" - ); - exit(0); - } - if( OptNArgs()!=1 ){ - fprintf(stderr,"Exactly one filename argument is required.\n"); - exit(1); - } - lem.errorcnt = 0; - - /* Initialize the machine */ - Strsafe_init(); - Symbol_init(); - State_init(); - lem.argv0 = argv[0]; - lem.filename = OptArg(0); - lem.basisflag = basisflag; - lem.nconflict = 0; - lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0; - lem.stacksize = 0; - lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest = - lem.tokenprefix = lem.outname = lem.extracode = 0; - lem.tablesize = 0; - Symbol_new("$"); - lem.errsym = Symbol_new("error"); - - /* Parse the input file */ - Parse(&lem); - if( lem.errorcnt ) exit(lem.errorcnt); - if( lem.rule==0 ){ - fprintf(stderr,"Empty grammar.\n"); - exit(1); - } - - /* Count and index the symbols of the grammar */ - lem.nsymbol = Symbol_count(); - Symbol_new("{default}"); - lem.symbols = Symbol_arrayof(); - qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),Symbolcmpp); - for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; - for(i=1; safe_isupper(lem.symbols[i]->name[0]); i++); - lem.nterminal = i; - - /* Generate a reprint of the grammar, if requested on the command line */ - if( rpflag ){ - Reprint(&lem); - }else{ - /* Initialize the size for all follow and first sets */ - SetSize(lem.nterminal); - - /* Find the precedence for every production rule (that has one) */ - FindRulePrecedences(&lem); - - /* Compute the lambda-nonterminals and the first-sets for every - ** nonterminal */ - FindFirstSets(&lem); - - /* Compute all LR(0) states. Also record follow-set propagation - ** links so that the follow-set can be computed later */ - lem.nstate = 0; - FindStates(&lem); - lem.sorted = State_arrayof(); - - /* Tie up loose ends on the propagation links */ - FindLinks(&lem); - - /* Compute the follow set of every reducible configuration */ - FindFollowSets(&lem); - - /* Compute the action tables */ - FindActions(&lem); - - /* Compress the action tables */ - if( compress==0 ) CompressTables(&lem); - - /* Generate a report of the parser generated. (the "y.output" file) */ - if( !quiet ) ReportOutput(&lem); - - /* Generate the source code for the parser */ - ReportTable(&lem, mhflag); - - /* Produce a header file for use by the scanner. (This step is - ** omitted if the "-m" option is used because makeheaders will - ** generate the file for us.) */ - if( !mhflag ) ReportHeader(&lem); - } - if( statistics ){ - printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", - lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); - printf(" %d states, %d parser table entries, %d conflicts\n", - lem.nstate, lem.tablesize, lem.nconflict); - } - if( lem.nconflict ){ - fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); - } - exit(lem.errorcnt + lem.nconflict); -} -/******************** From the file "msort.c" *******************************/ -/* -** A generic merge-sort program. -** -** USAGE: -** Let "ptr" be a pointer to some structure which is at the head of -** a null-terminated list. Then to sort the list call: -** -** ptr = msort(ptr,&(ptr->next),cmpfnc); -** -** In the above, "cmpfnc" is a pointer to a function which compares -** two instances of the structure and returns an integer, as in -** strcmp. The second argument is a pointer to the pointer to the -** second element of the linked list. This address is used to compute -** the offset to the "next" field within the structure. The offset to -** the "next" field must be constant for all structures in the list. -** -** The function returns a new pointer which is the head of the list -** after sorting. -** -** ALGORITHM: -** Merge-sort. -*/ - -/* -** Return a pointer to the next structure in the linked list. -*/ -#define NEXT(A) (*(char**)(((char *)A)+offset)) - -/* -** Inputs: -** a: A sorted, null-terminated linked list. (May be null). -** b: A sorted, null-terminated linked list. (May be null). -** cmp: A pointer to the comparison function. -** offset: Offset in the structure to the "next" field. -** -** Return Value: -** A pointer to the head of a sorted list containing the elements -** of both a and b. -** -** Side effects: -** The "next" pointers for elements in the lists a and b are -** changed. -*/ -static char *merge(char *a, char *b, int (*cmp)(const void *, const void *), - int offset) -{ - char *ptr, *head; - - if( a==0 ){ - head = b; - }else if( b==0 ){ - head = a; - }else{ - if( (*cmp)(a,b)<0 ){ - ptr = a; - a = NEXT(a); - }else{ - ptr = b; - b = NEXT(b); - } - head = ptr; - while( a && b ){ - if( (*cmp)(a,b)<0 ){ - NEXT(ptr) = a; - ptr = a; - a = NEXT(a); - }else{ - NEXT(ptr) = b; - ptr = b; - b = NEXT(b); - } - } - if( a ) NEXT(ptr) = a; - else NEXT(ptr) = b; - } - return head; -} - -/* -** Inputs: -** list: Pointer to a singly-linked list of structures. -** next: Pointer to pointer to the second element of the list. -** cmp: A comparison function. -** -** Return Value: -** A pointer to the head of a sorted list containing the elements -** orginally in list. -** -** Side effects: -** The "next" pointers for elements in list are changed. -*/ -#define LISTSIZE 30 -char *msort(char *list, char **next, int (*cmp)(const void *, const void *)) -{ - int offset; - char *ep; - char *set[LISTSIZE]; - int i; - offset = (char *)next - (char *)list; - for(i=0; istate = WAITING_FOR_DECL_KEYWORD; - }else if( safe_islower(x[0]) ){ - psp->lhs = Symbol_new(x); - psp->nrhs = 0; - psp->lhsalias = 0; - psp->state = WAITING_FOR_ARROW; - }else if( x[0]=='{' ){ - if( psp->prevrule==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"There is not prior rule opon which to attach the code \ -fragment which begins on this line."); - psp->errorcnt++; - }else if( psp->prevrule->code!=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"Code fragment beginning on this line is not the first \ -to follow the previous rule."); - psp->errorcnt++; - }else{ - psp->prevrule->line = psp->tokenlineno; - psp->prevrule->code = &x[1]; - } - }else if( x[0]=='[' ){ - psp->state = PRECEDENCE_MARK_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Token \"%s\" should be either \"%%\" or a nonterminal name.", - x); - psp->errorcnt++; - } - break; - case PRECEDENCE_MARK_1: - if( !safe_isupper(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "The precedence symbol must be a terminal."); - psp->errorcnt++; - }else if( psp->prevrule==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "There is no prior rule to assign precedence \"[%s]\".",x); - psp->errorcnt++; - }else if( psp->prevrule->precsym!=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, -"Precedence mark on this line is not the first \ -to follow the previous rule."); - psp->errorcnt++; - }else{ - psp->prevrule->precsym = Symbol_new(x); - } - psp->state = PRECEDENCE_MARK_2; - break; - case PRECEDENCE_MARK_2: - if( x[0]!=']' ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \"]\" on precedence mark."); - psp->errorcnt++; - } - psp->state = WAITING_FOR_DECL_OR_RULE; - break; - case WAITING_FOR_ARROW: - if( x[0]==':' && x[1]==':' && x[2]=='=' ){ - psp->state = IN_RHS; - }else if( x[0]=='(' ){ - psp->state = LHS_ALIAS_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Expected to see a \":\" following the LHS symbol \"%s\".", - psp->lhs->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_1: - if( safe_isalpha(x[0]) ){ - psp->lhsalias = x; - psp->state = LHS_ALIAS_2; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "\"%s\" is not a valid alias for the LHS \"%s\"\n", - x,psp->lhs->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_2: - if( x[0]==')' ){ - psp->state = LHS_ALIAS_3; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case LHS_ALIAS_3: - if( x[0]==':' && x[1]==':' && x[2]=='=' ){ - psp->state = IN_RHS; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \"->\" following: \"%s(%s)\".", - psp->lhs->name,psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case IN_RHS: - if( x[0]=='.' ){ - struct rule *rp; - rp = (struct rule *)malloc( sizeof(struct rule) + - sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs ); - if( rp==0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Can't allocate enough memory for this rule."); - psp->errorcnt++; - psp->prevrule = 0; - }else{ - int i; - rp->ruleline = psp->tokenlineno; - rp->rhs = (struct symbol**)&rp[1]; - rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]); - for(i=0; inrhs; i++){ - rp->rhs[i] = psp->rhs[i]; - rp->rhsalias[i] = psp->alias[i]; - } - rp->lhs = psp->lhs; - rp->lhsalias = psp->lhsalias; - rp->nrhs = psp->nrhs; - rp->code = 0; - rp->precsym = 0; - rp->index = psp->gp->nrule++; - rp->nextlhs = rp->lhs->rule; - rp->lhs->rule = rp; - rp->next = 0; - if( psp->firstrule==0 ){ - psp->firstrule = psp->lastrule = rp; - }else{ - psp->lastrule->next = rp; - psp->lastrule = rp; - } - psp->prevrule = rp; - } - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( safe_isalpha(x[0]) ){ - if( psp->nrhs>=MAXRHS ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Too many symbol on RHS or rule beginning at \"%s\".", - x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - }else{ - psp->rhs[psp->nrhs] = Symbol_new(x); - psp->alias[psp->nrhs] = 0; - psp->nrhs++; - } - }else if( x[0]=='(' && psp->nrhs>0 ){ - psp->state = RHS_ALIAS_1; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal character on RHS of rule: \"%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case RHS_ALIAS_1: - if( safe_isalpha(x[0]) ){ - psp->alias[psp->nrhs-1] = x; - psp->state = RHS_ALIAS_2; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", - x,psp->rhs[psp->nrhs-1]->name); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case RHS_ALIAS_2: - if( x[0]==')' ){ - psp->state = IN_RHS; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); - psp->errorcnt++; - psp->state = RESYNC_AFTER_RULE_ERROR; - } - break; - case WAITING_FOR_DECL_KEYWORD: - if( safe_isalpha(x[0]) ){ - psp->declkeyword = x; - psp->declargslot = 0; - psp->decllnslot = 0; - psp->state = WAITING_FOR_DECL_ARG; - if( strcmp(x,"name")==0 ){ - psp->declargslot = &(psp->gp->name); - }else if( strcmp(x,"include")==0 ){ - psp->declargslot = &(psp->gp->include); - psp->decllnslot = &psp->gp->includeln; - }else if( strcmp(x,"code")==0 ){ - psp->declargslot = &(psp->gp->extracode); - psp->decllnslot = &psp->gp->extracodeln; - }else if( strcmp(x,"token_destructor")==0 ){ - psp->declargslot = &psp->gp->tokendest; - psp->decllnslot = &psp->gp->tokendestln; - }else if( strcmp(x,"token_prefix")==0 ){ - psp->declargslot = &psp->gp->tokenprefix; - }else if( strcmp(x,"syntax_error")==0 ){ - psp->declargslot = &(psp->gp->error); - psp->decllnslot = &psp->gp->errorln; - }else if( strcmp(x,"parse_accept")==0 ){ - psp->declargslot = &(psp->gp->accept); - psp->decllnslot = &psp->gp->acceptln; - }else if( strcmp(x,"parse_failure")==0 ){ - psp->declargslot = &(psp->gp->failure); - psp->decllnslot = &psp->gp->failureln; - }else if( strcmp(x,"stack_overflow")==0 ){ - psp->declargslot = &(psp->gp->overflow); - psp->decllnslot = &psp->gp->overflowln; - }else if( strcmp(x,"extra_argument")==0 ){ - psp->declargslot = &(psp->gp->arg); - }else if( strcmp(x,"token_type")==0 ){ - psp->declargslot = &(psp->gp->tokentype); - }else if( strcmp(x,"stack_size")==0 ){ - psp->declargslot = &(psp->gp->stacksize); - }else if( strcmp(x,"start_symbol")==0 ){ - psp->declargslot = &(psp->gp->start); - }else if( strcmp(x,"left")==0 ){ - psp->preccounter++; - psp->declassoc = LEFT; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"right")==0 ){ - psp->preccounter++; - psp->declassoc = RIGHT; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"nonassoc")==0 ){ - psp->preccounter++; - psp->declassoc = NONE; - psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; - }else if( strcmp(x,"destructor")==0 ){ - psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; - }else if( strcmp(x,"type")==0 ){ - psp->state = WAITING_FOR_DATATYPE_SYMBOL; - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Unknown declaration keyword: \"%%%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal declaration keyword: \"%s\".",x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - break; - case WAITING_FOR_DESTRUCTOR_SYMBOL: - if( !safe_isalpha(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol name missing after %%destructor keyword"); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - struct symbol *sp = Symbol_new(x); - psp->declargslot = &sp->destructor; - psp->decllnslot = &sp->destructorln; - psp->state = WAITING_FOR_DECL_ARG; - } - break; - case WAITING_FOR_DATATYPE_SYMBOL: - if( !safe_isalpha(x[0]) ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol name missing after %%destructor keyword"); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - struct symbol *sp = Symbol_new(x); - psp->declargslot = &sp->datatype; - psp->decllnslot = 0; - psp->state = WAITING_FOR_DECL_ARG; - } - break; - case WAITING_FOR_PRECEDENCE_SYMBOL: - if( x[0]=='.' ){ - psp->state = WAITING_FOR_DECL_OR_RULE; - }else if( safe_isupper(x[0]) ){ - struct symbol *sp; - sp = Symbol_new(x); - if( sp->prec>=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "Symbol \"%s\" has already be given a precedence.",x); - psp->errorcnt++; - }else{ - sp->prec = psp->preccounter; - sp->assoc = psp->declassoc; - } - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Can't assign a precedence to \"%s\".",x); - psp->errorcnt++; - } - break; - case WAITING_FOR_DECL_ARG: - if( (x[0]=='{' || x[0]=='\"' || safe_isalnum(x[0])) ){ - if( *(psp->declargslot)!=0 ){ - ErrorMsg(psp->filename,psp->tokenlineno, - "The argument \"%s\" to declaration \"%%%s\" is not the first.", - x[0]=='\"' ? &x[1] : x,psp->declkeyword); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - }else{ - *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x; - if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno; - psp->state = WAITING_FOR_DECL_OR_RULE; - } - }else{ - ErrorMsg(psp->filename,psp->tokenlineno, - "Illegal argument to %%%s: %s",psp->declkeyword,x); - psp->errorcnt++; - psp->state = RESYNC_AFTER_DECL_ERROR; - } - break; - case RESYNC_AFTER_RULE_ERROR: -/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; -** break; */ - case RESYNC_AFTER_DECL_ERROR: - if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; - if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; - break; - } -} - -/* In spite of its name, this function is really a scanner. It read -** in the entire input file (all at once) then tokenizes it. Each -** token is passed to the function "parseonetoken" which builds all -** the appropriate data structures in the global state vector "gp". -*/ -void Parse(struct lemon *gp) -{ - struct pstate ps; - FILE *fp; - char *filebuf; - long filesize; - int lineno; - char c; - char *cp, *nextcp; - int startline = 0; - - ps.gp = gp; - ps.filename = gp->filename; - ps.errorcnt = 0; - ps.state = INITIALIZE; - - /* Begin by reading the input file */ - fp = fopen(ps.filename,"rb"); - if( fp==0 ){ - ErrorMsg(ps.filename,0,"Can't open this file for reading."); - gp->errorcnt++; - return; - } - fseek(fp,0,2); - filesize = ftell(fp); - rewind(fp); - /* XXX - what if filesize is bigger than the maximum size_t value? */ - filebuf = (char *)malloc( filesize+1 ); - if( filebuf==0 ){ - ErrorMsg(ps.filename,0,"Can't allocate %ld of memory to hold this file.", - filesize+1); - gp->errorcnt++; - return; - } - if( fread(filebuf,1,filesize,fp)!=(size_t)filesize ){ - ErrorMsg(ps.filename,0,"Can't read in all %ld bytes of this file.", - filesize); - free(filebuf); - gp->errorcnt++; - return; - } - fclose(fp); - filebuf[filesize] = 0; - - /* Now scan the text of the input file */ - lineno = 1; - for(cp=filebuf; (c= *cp)!=0; ){ - if( c=='\n' ) lineno++; /* Keep track of the line number */ - if( safe_isspace(c) ){ cp++; continue; } /* Skip all white space */ - if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ - cp+=2; - while( (c= *cp)!=0 && c!='\n' ) cp++; - continue; - } - if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ - cp+=2; - while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ - if( c=='\n' ) lineno++; - cp++; - } - if( c ) cp++; - continue; - } - ps.tokenstart = cp; /* Mark the beginning of the token */ - ps.tokenlineno = lineno; /* Linenumber on which token begins */ - if( c=='\"' ){ /* String literals */ - cp++; - while( (c= *cp)!=0 && c!='\"' ){ - if( c=='\n' ) lineno++; - cp++; - } - if( c==0 ){ - ErrorMsg(ps.filename,startline, -"String starting on this line is not terminated before the end of the file."); - ps.errorcnt++; - nextcp = cp; - }else{ - nextcp = cp+1; - } - }else if( c=='{' ){ /* A block of C code */ - int level; - cp++; - for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ - if( c=='\n' ) lineno++; - else if( c=='{' ) level++; - else if( c=='}' ) level--; - else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ - char prevc; - cp = &cp[2]; - prevc = 0; - while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ - if( c=='\n' ) lineno++; - prevc = c; - cp++; - } - }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ - cp = &cp[2]; - while( (c= *cp)!=0 && c!='\n' ) cp++; - if( c ) lineno++; - }else if( c=='\'' || c=='\"' ){ /* String a character literals */ - char startchar, prevc; - startchar = c; - prevc = 0; - for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ - if( c=='\n' ) lineno++; - if( prevc=='\\' ) prevc = 0; - else prevc = c; - } - } - } - if( c==0 ){ - ErrorMsg(ps.filename,ps.tokenlineno, -"C code starting on this line is not terminated before the end of the file."); - ps.errorcnt++; - nextcp = cp; - }else{ - nextcp = cp+1; - } - }else if( safe_isalnum(c) ){ /* Identifiers */ - while( (c= *cp)!=0 && (safe_isalnum(c) || c=='_') ) cp++; - nextcp = cp; - }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ - cp += 3; - nextcp = cp; - }else{ /* All other (one character) operators */ - cp++; - nextcp = cp; - } - c = *cp; - *cp = 0; /* Null terminate the token */ - parseonetoken(&ps); /* Parse the token */ - *cp = c; /* Restore the buffer */ - cp = nextcp; - } - free(filebuf); /* Release the buffer after parsing */ - gp->rule = ps.firstrule; - gp->errorcnt = ps.errorcnt; -} -/*************************** From the file "plink.c" *********************/ -/* -** Routines processing configuration follow-set propagation links -** in the LEMON parser generator. -*/ -static struct plink *plink_freelist = 0; - -/* Allocate a new plink */ -struct plink *Plink_new(void){ - struct plink *new; - - if( plink_freelist==0 ){ - int i; - int amt = 100; - plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt ); - if( plink_freelist==0 ){ - fprintf(stderr, - "Unable to allocate memory for a new follow-set propagation link.\n"); - exit(1); - } - for(i=0; inext; - return new; -} - -/* Add a plink to a plink list */ -void Plink_add(struct plink **plpp, struct config *cfp) -{ - struct plink *new; - new = Plink_new(); - new->next = *plpp; - *plpp = new; - new->cfp = cfp; -} - -/* Transfer every plink on the list "from" to the list "to" */ -void Plink_copy(struct plink **to, struct plink *from) -{ - struct plink *nextpl; - while( from ){ - nextpl = from->next; - from->next = *to; - *to = from; - from = nextpl; - } -} - -/* Delete every plink on the list */ -void Plink_delete(struct plink *plp) -{ - struct plink *nextpl; - - while( plp ){ - nextpl = plp->next; - plp->next = plink_freelist; - plink_freelist = plp; - plp = nextpl; - } -} - -/*********************** From the file "report.c" **************************/ -/* -** Procedures for generating reports and tables in the LEMON parser generator. -*/ - -PRIVATE char *file_makename(struct lemon *, const char *); -PRIVATE FILE *file_open(struct lemon *, const char *, const char *); -void ConfigPrint(FILE *, struct config *); -int PrintAction(struct action *, FILE *, int); -PRIVATE const char *pathsearch(void); -PRIVATE int compute_action(struct lemon *, struct action *); -PRIVATE void tplt_xfer(char *, FILE *, FILE *, int *); -PRIVATE FILE *tplt_open(struct lemon *); -PRIVATE void tplt_print(FILE *, struct lemon *, char *, int, int *); -void emit_destructor_code(FILE *, struct symbol *, struct lemon *, int *); -int has_destructor(struct symbol *, struct lemon *); -PRIVATE void emit_code(FILE *, struct rule *, struct lemon *, int *); -void print_stack_union(FILE *, struct lemon *, int *, int); - -/* Generate a filename with the given suffix. Space to hold the -** name comes from malloc() and must be freed by the calling -** function. -*/ -PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) -{ - char *name = NULL; - char *cp, *fname; - - fname = output_file ? output_file : lemp->filename; - name = malloc( strlen(fname) + strlen(suffix)); - if( name==0 ){ - fprintf(stderr,"Can't allocate space for a filename.\n"); - exit(1); - } - strcpy(name, fname); - cp = strrchr(name,'.'); - if( cp ) *cp = 0; - strcat(name,suffix); - return name; -} - -/* Open a file with a name based on the name of the input file, -** but with a different (specified) suffix, and return a pointer -** to the stream */ -PRIVATE FILE *file_open(struct lemon *lemp, const char *suffix, - const char *mode) -{ - FILE *fp; - - if( lemp->outname ) free(lemp->outname); - lemp->outname = file_makename(lemp, suffix); - fp = fopen(lemp->outname,mode); - if( fp==0 && *mode=='w' ){ - fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); - lemp->errorcnt++; - return 0; - } - return fp; -} - -/* Duplicate the input file without comments and without actions -** on rules */ -void Reprint(struct lemon *lemp) -{ - struct rule *rp; - struct symbol *sp; - int i, j, maxlen, len, ncolumns, skip; - printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); - maxlen = 10; - for(i=0; insymbol; i++){ - sp = lemp->symbols[i]; - len = strlen(sp->name); - if( len>maxlen ) maxlen = len; - } - ncolumns = 76/(maxlen+5); - if( ncolumns<1 ) ncolumns = 1; - skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; - for(i=0; insymbol; j+=skip){ - sp = lemp->symbols[j]; - assert( sp->index==j ); - printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); - } - printf("\n"); - } - for(rp=lemp->rule; rp; rp=rp->next){ - printf("%s",rp->lhs->name); -/* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ - printf(" ::="); - for(i=0; inrhs; i++){ - printf(" %s",rp->rhs[i]->name); -/* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ - } - printf("."); - if( rp->precsym ) printf(" [%s]",rp->precsym->name); -/* if( rp->code ) printf("\n %s",rp->code); */ - printf("\n"); - } -} - -void ConfigPrint(FILE *fp, struct config *cfp) -{ - struct rule *rp; - int i; - rp = cfp->rp; - fprintf(fp,"%s ::=",rp->lhs->name); - for(i=0; i<=rp->nrhs; i++){ - if( i==cfp->dot ) fprintf(fp," *"); - if( i==rp->nrhs ) break; - fprintf(fp," %s",rp->rhs[i]->name); - } -} - -/* #define TEST */ -#ifdef TEST -/* Print a set */ -PRIVATE void SetPrint(FILE *out, char *set, struct lemon *lemp) -{ - int i; - char *spacer; - spacer = ""; - fprintf(out,"%12s[",""); - for(i=0; interminal; i++){ - if( SetFind(set,i) ){ - fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); - spacer = " "; - } - } - fprintf(out,"]\n"); -} - -/* Print a plink chain */ -PRIVATE void PlinkPrint(FILE *out, struct plink *plp, char *tag) -{ - while( plp ){ - fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index); - ConfigPrint(out,plp->cfp); - fprintf(out,"\n"); - plp = plp->next; - } -} -#endif - -/* Print an action to the given file descriptor. Return FALSE if -** nothing was actually printed. -*/ -int PrintAction(struct action *ap, FILE *fp, int indent){ - int result = 1; - switch( ap->type ){ - case SHIFT: - fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->index); - break; - case REDUCE: - fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); - break; - case ACCEPT: - fprintf(fp,"%*s accept",indent,ap->sp->name); - break; - case ERROR: - fprintf(fp,"%*s error",indent,ap->sp->name); - break; - case CONFLICT: - fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", - indent,ap->sp->name,ap->x.rp->index); - break; - case SH_RESOLVED: - case RD_RESOLVED: - case NOT_USED: - result = 0; - break; - } - return result; -} - -/* Generate the "y.output" log file */ -void ReportOutput(struct lemon *lemp) -{ - int i; - struct state *stp; - struct config *cfp; - struct action *ap; - FILE *fp; - - fp = file_open(lemp,".out","w"); - if( fp==0 ) return; - fprintf(fp," \b"); - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - fprintf(fp,"State %d:\n",stp->index); - if( lemp->basisflag ) cfp=stp->bp; - else cfp=stp->cfp; - while( cfp ){ - char buf[20]; - if( cfp->dot==cfp->rp->nrhs ){ - sprintf(buf,"(%d)",cfp->rp->index); - fprintf(fp," %5s ",buf); - }else{ - fprintf(fp," "); - } - ConfigPrint(fp,cfp); - fprintf(fp,"\n"); -#ifdef TEST - SetPrint(fp,cfp->fws,lemp); - PlinkPrint(fp,cfp->fplp,"To "); - PlinkPrint(fp,cfp->bplp,"From"); -#endif - if( lemp->basisflag ) cfp=cfp->bp; - else cfp=cfp->next; - } - fprintf(fp,"\n"); - for(ap=stp->ap; ap; ap=ap->next){ - if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); - } - fprintf(fp,"\n"); - } - fclose(fp); - return; -} - -PRIVATE const char *pathsearch(void) -{ - int i; - - for (i = 0; i < sizeof(lempar_locations)/sizeof(char *); i++) - if (lempar_locations[i] && access(lempar_locations[i], 004) == 0) - return lempar_locations[i]; - - return(NULL); -} - -/* Given an action, compute the integer value for that action -** which is to be put in the action table of the generated machine. -** Return negative if no action should be generated. -*/ -PRIVATE int compute_action(struct lemon *lemp, struct action *ap) -{ - int act; - switch( ap->type ){ - case SHIFT: act = ap->x.stp->index; break; - case REDUCE: act = ap->x.rp->index + lemp->nstate; break; - case ERROR: act = lemp->nstate + lemp->nrule; break; - case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; - default: act = -1; break; - } - return act; -} - -#define LINESIZE 1000 -/* The next cluster of routines are for reading the template file -** and writing the results to the generated parser */ -/* The first function transfers data from "in" to "out" until -** a line is seen which begins with "%%". The line number is -** tracked. -** -** if name!=0, then any word that begin with "Parse" is changed to -** begin with *name instead. -*/ -PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) -{ - int i, iStart; - char line[LINESIZE]; - while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ - (*lineno)++; - iStart = 0; - if( name ){ - for(i=0; line[i]; i++){ - if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 - && (i==0 || !safe_isalpha(line[i-1])) - ){ - if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); - fprintf(out,"%s",name); - i += 4; - iStart = i+1; - } - } - } - fprintf(out,"%s",&line[iStart]); - } -} - -/* The next function finds the template file and opens it, returning -** a pointer to the opened file. */ -PRIVATE FILE *tplt_open(struct lemon *lemp) -{ - char buf[1000]; - FILE *in; - const char *tpltname; - char *cp; - - cp = strrchr(lemp->filename,'.'); - if( cp ){ - sprintf(buf,"%.*s.lt",(int)cp-(int)lemp->filename,lemp->filename); - }else{ - sprintf(buf,"%s.lt",lemp->filename); - } - if( access(buf,004)==0 ){ - tpltname = buf; - }else{ - tpltname = pathsearch(); - } - if( tpltname==0 ){ - fprintf(stderr,"Can't find the parser driver template file.\n"); - lemp->errorcnt++; - return 0; - } - in = fopen(tpltname,"r"); - if( in==0 ){ - fprintf(stderr,"Can't open the template file \"%s\".\n", tpltname); - lemp->errorcnt++; - return 0; - } - return in; -} - -/* Print a string to the file and keep the linenumber up to date */ -PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, - int strln, int *lineno) -{ - if( str==0 ) return; - fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++; - while( *str ){ - if( *str=='\n' ) (*lineno)++; - putc(*str,out); - str++; - } - fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2; - return; -} - -/* -** The following routine emits code for the destructor for the -** symbol sp -*/ -void emit_destructor_code(FILE *out, struct symbol *sp, struct lemon *lemp, - int *lineno) -{ - char *cp; - - int linecnt = 0; - if( sp->type==TERMINAL ){ - cp = lemp->tokendest; - if( cp==0 ) return; - fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename); - }else{ - cp = sp->destructor; - if( cp==0 ) return; - fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename); - } - for(; *cp; cp++){ - if( *cp=='$' && cp[1]=='$' ){ - fprintf(out,"(yypminor->yy%d)",sp->dtnum); - cp++; - continue; - } - if( *cp=='\n' ) linecnt++; - fputc(*cp,out); - } - (*lineno) += 3 + linecnt; - fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname); - return; -} - -/* -** Return TRUE (non-zero) if the given symbol has a distructor. -*/ -int has_destructor(struct symbol *sp, struct lemon *lemp) -{ - int ret; - if( sp->type==TERMINAL ){ - ret = lemp->tokendest!=0; - }else{ - ret = sp->destructor!=0; - } - return ret; -} - -/* -** Generate code which executes when the rule "rp" is reduced. Write -** the code to "out". Make sure lineno stays up-to-date. -*/ -PRIVATE void emit_code(FILE *out, struct rule *rp, struct lemon *lemp, - int *lineno) -{ - char *cp, *xp; - int linecnt = 0; - int i; - char lhsused = 0; /* True if the LHS element has been used */ - char used[MAXRHS]; /* True for each RHS element which is used */ - - for(i=0; inrhs; i++) used[i] = 0; - lhsused = 0; - - /* Generate code to do the reduce action */ - if( rp->code ){ - fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename); - for(cp=rp->code; *cp; cp++){ - if( safe_isalpha(*cp) && (cp==rp->code || !safe_isalnum(cp[-1])) ){ - char saved; - for(xp= &cp[1]; safe_isalnum(*xp); xp++); - saved = *xp; - *xp = 0; - if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ - fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum); - cp = xp; - lhsused = 1; - }else{ - for(i=0; inrhs; i++){ - if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ - fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum); - cp = xp; - used[i] = 1; - break; - } - } - } - *xp = saved; - } - if( *cp=='\n' ) linecnt++; - fputc(*cp,out); - } /* End loop */ - (*lineno) += 3 + linecnt; - fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname); - } /* End if( rp->code ) */ - - /* Check to make sure the LHS has been used */ - if( rp->lhsalias && !lhsused ){ - ErrorMsg(lemp->filename,rp->ruleline, - "Label \"%s\" for \"%s(%s)\" is never used.", - rp->lhsalias,rp->lhs->name,rp->lhsalias); - lemp->errorcnt++; - } - - /* Generate destructor code for RHS symbols which are not used in the - ** reduce code */ - for(i=0; inrhs; i++){ - if( rp->rhsalias[i] && !used[i] ){ - ErrorMsg(lemp->filename,rp->ruleline, - "Label $%s$ for \"%s(%s)\" is never used.", - rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); - lemp->errorcnt++; - }else if( rp->rhsalias[i]==0 ){ - if( has_destructor(rp->rhs[i],lemp) ){ - fprintf(out," yy_destructor(%d,&yymsp[%d].minor);\n", - rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++; - }else{ - fprintf(out," /* No destructor defined for %s */\n", - rp->rhs[i]->name); - (*lineno)++; - } - } - } - return; -} - -/* -** Print the definition of the union used for the parser's data stack. -** This union contains fields for every possible data type for tokens -** and nonterminals. In the process of computing and printing this -** union, also set the ".dtnum" field of every terminal and nonterminal -** symbol. -*/ -void print_stack_union( - FILE *out, /* The output stream */ - struct lemon *lemp, /* The main info structure for this parser */ - int *plineno, /* Pointer to the line number */ - int mhflag) /* True if generating makeheaders output */ -{ - int lineno = *plineno; /* The line number of the output */ - char **types; /* A hash table of datatypes */ - int arraysize; /* Size of the "types" array */ - int maxdtlength; /* Maximum length of any ".datatype" field. */ - char *stddt; /* Standardized name for a datatype */ - int i,j; /* Loop counters */ - int hash; /* For hashing the name of a type */ - const char *name; /* Name of the parser */ - - /* Allocate and initialize types[] and allocate stddt[] */ - arraysize = lemp->nsymbol * 2; - types = (char**)malloc( arraysize * sizeof(char*) ); - for(i=0; insymbol; i++){ - int len; - struct symbol *sp = lemp->symbols[i]; - if( sp->datatype==0 ) continue; - len = strlen(sp->datatype); - if( len>maxdtlength ) maxdtlength = len; - } - stddt = (char*)malloc( maxdtlength*2 + 1 ); - if( types==0 || stddt==0 ){ - fprintf(stderr,"Out of memory.\n"); - exit(1); - } - - /* Build a hash table of datatypes. The ".dtnum" field of each symbol - ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is - ** used for terminal symbols and for nonterminals which don't specify - ** a datatype using the %type directive. */ - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - char *cp; - if( sp==lemp->errsym ){ - sp->dtnum = arraysize+1; - continue; - } - if( sp->type!=NONTERMINAL || sp->datatype==0 ){ - sp->dtnum = 0; - continue; - } - cp = sp->datatype; - j = 0; - while( safe_isspace(*cp) ) cp++; - while( *cp ) stddt[j++] = *cp++; - while( j>0 && safe_isspace(stddt[j-1]) ) j--; - stddt[j] = 0; - hash = 0; - for(j=0; stddt[j]; j++){ - hash = hash*53 + stddt[j]; - } - if( hash<0 ) hash = -hash; - hash = hash%arraysize; - while( types[hash] ){ - if( strcmp(types[hash],stddt)==0 ){ - sp->dtnum = hash + 1; - break; - } - hash++; - if( hash>=arraysize ) hash = 0; - } - if( types[hash]==0 ){ - sp->dtnum = hash + 1; - types[hash] = (char*)malloc( strlen(stddt)+1 ); - if( types[hash]==0 ){ - fprintf(stderr,"Out of memory.\n"); - exit(1); - } - strcpy(types[hash],stddt); - } - } - - /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ - name = lemp->name ? lemp->name : "Parse"; - lineno = *plineno; - if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } - fprintf(out,"#define %sTOKENTYPE %s\n",name, - lemp->tokentype?lemp->tokentype:"void*"); lineno++; - if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } - fprintf(out,"typedef union {\n"); lineno++; - fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; - for(i=0; ierrsym->dtnum); lineno++; - free(stddt); - free(types); - fprintf(out,"} YYMINORTYPE;\n"); lineno++; - *plineno = lineno; -} - -char def_stacksize[] = "100"; - -/* Generate C source code for the parser */ -void ReportTable( - struct lemon *lemp, - int mhflag) /* Output in makeheaders format if true */ -{ - FILE *out, *in; - char line[LINESIZE]; - int lineno; - struct state *stp; - struct action *ap; - struct rule *rp; - int i; - int tablecnt; - const char *name; - - in = tplt_open(lemp); - if( in==0 ) return; - out = file_open(lemp,".c","w"); - if( out==0 ){ - fclose(in); - return; - } - lineno = 1; - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the include code, if any */ - tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno); - if( mhflag ){ - char *name2 = file_makename(lemp, ".h"); - fprintf(out,"#include \"%s\"\n", name); lineno++; - free(name2); - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate #defines for all tokens */ - if( mhflag ){ - const char *prefix; - fprintf(out,"#if INTERFACE\n"); lineno++; - if( lemp->tokenprefix ) prefix = lemp->tokenprefix; - else prefix = ""; - for(i=1; interminal; i++){ - fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); - lineno++; - } - fprintf(out,"#endif\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the defines */ - fprintf(out,"/* \001 */\n"); - fprintf(out,"#define YYCODETYPE %s\n", - lemp->nsymbol>250?"int":"unsigned char"); lineno++; - fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; - fprintf(out,"#define YYACTIONTYPE %s\n", - lemp->nstate+lemp->nrule>250?"int":"unsigned char"); lineno++; - print_stack_union(out,lemp,&lineno,mhflag); - if( lemp->stacksize ){ - if( atoi(lemp->stacksize)<=0 ){ - ErrorMsg(lemp->filename,0, -"Illegal stack size: [%s]. The stack size should be an integer constant.", - lemp->stacksize); - lemp->errorcnt++; - lemp->stacksize = def_stacksize; - } - fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; - }else{ - fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; - } - if( mhflag ){ - fprintf(out,"#if INTERFACE\n"); lineno++; - } - name = lemp->name ? lemp->name : "Parse"; - if( lemp->arg && lemp->arg[0] ){ - int j; - j = strlen(lemp->arg); - while( j>=1 && safe_isspace(lemp->arg[j-1]) ) j--; - while( j>=1 && (safe_isalnum(lemp->arg[j-1]) || lemp->arg[j-1]=='_') ) j--; - fprintf(out,"#define %sARGDECL ,%s\n",name,&lemp->arg[j]); lineno++; - fprintf(out,"#define %sXARGDECL %s;\n",name,lemp->arg); lineno++; - fprintf(out,"#define %sANSIARGDECL ,%s\n",name,lemp->arg); lineno++; - }else{ - fprintf(out,"#define %sARGDECL\n",name); lineno++; - fprintf(out,"#define %sXARGDECL\n",name); lineno++; - fprintf(out,"#define %sANSIARGDECL\n",name); lineno++; - } - if( mhflag ){ - fprintf(out,"#endif\n"); lineno++; - } - fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; - fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; - fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; - fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the action table. - ** - ** Each entry in the action table is an element of the following - ** structure: - ** struct yyActionEntry { - ** YYCODETYPE lookahead; - ** YYACTIONTYPE action; - ** struct yyActionEntry *next; - ** } - ** - ** The entries are grouped into hash tables, one hash table for each - ** parser state. The hash table has a size which is the smallest - ** power of two needed to hold all entries. - */ - tablecnt = 0; - - /* Loop over parser states */ - for(i=0; instate; i++){ - size_t tablesize; /* size of the hash table */ - unsigned int j,k; /* Loop counter */ - int collide[2048]; /* The collision chain for the table */ - struct action *table[2048]; /* Build the hash table here */ - - /* Find the number of actions and initialize the hash table */ - stp = lemp->sorted[i]; - stp->tabstart = tablecnt; - stp->naction = 0; - for(ap=stp->ap; ap; ap=ap->next){ - if( ap->sp->index!=lemp->nsymbol && compute_action(lemp,ap)>=0 ){ - stp->naction++; - } - } - tablesize = 1; - while( tablesizenaction ) tablesize += tablesize; - assert( tablesize<= sizeof(table)/sizeof(table[0]) ); - for(j=0; jtabdfltact = lemp->nstate + lemp->nrule; - for(ap=stp->ap; ap; ap=ap->next){ - int action = compute_action(lemp,ap); - int h; - if( ap->sp->index==lemp->nsymbol ){ - stp->tabdfltact = action; - }else if( action>=0 ){ - h = ap->sp->index & (tablesize-1); - ap->collide = table[h]; - table[h] = ap; - } - } - - /* Resolve collisions */ - for(j=k=0; jcollide ){ - while( table[k] ) k++; - table[k] = table[j]->collide; - collide[j] = k; - table[j]->collide = 0; - if( kindex); lineno++; - for(j=0; jsp->index, - compute_action(lemp,table[j])); - if( collide[j]>=0 ){ - fprintf(out,"&yyActionTable[%4d] }, /* ", - collide[j] + tablecnt); - }else{ - fprintf(out,"0 }, /* "); - } - PrintAction(table[j],out,22); - fprintf(out," */\n"); - } - lineno++; - } - - /* Update the table count */ - tablecnt += tablesize; - } - tplt_xfer(lemp->name,in,out,&lineno); - lemp->tablesize = tablecnt; - - /* Generate the state table - ** - ** Each entry is an element of the following structure: - ** struct yyStateEntry { - ** struct yyActionEntry *hashtbl; - ** int mask; - ** YYACTIONTYPE actionDefault; - ** } - */ - for(i=0; instate; i++){ - size_t tablesize; - stp = lemp->sorted[i]; - tablesize = 1; - while( tablesizenaction ) tablesize += tablesize; - fprintf(out," { &yyActionTable[%d], %lu, %d},\n", - stp->tabstart, - (unsigned long)tablesize - 1, - stp->tabdfltact); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate a table containing the symbolic name of every symbol */ - for(i=0; insymbol; i++){ - sprintf(line,"\"%s\",",lemp->symbols[i]->name); - fprintf(out," %-15s",line); - if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } - } - if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes every time a symbol is popped from - ** the stack while processing errors or while destroying the parser. - ** (In other words, generate the %destructor actions) */ - if( lemp->tokendest ){ - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - if( sp==0 || sp->type!=TERMINAL ) continue; - fprintf(out," case %d:\n",sp->index); lineno++; - } - for(i=0; insymbol && lemp->symbols[i]->type!=TERMINAL; i++); - if( insymbol ){ - emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); - fprintf(out," break;\n"); lineno++; - } - } - for(i=0; insymbol; i++){ - struct symbol *sp = lemp->symbols[i]; - if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; - fprintf(out," case %d:\n",sp->index); lineno++; - emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); - fprintf(out," break;\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes whenever the parser stack overflows */ - tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate the table of rule information - ** - ** Note: This code depends on the fact that rules are number - ** sequentually beginning with 0. - */ - for(rp=lemp->rule; rp; rp=rp->next){ - fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which execution during each REDUCE action */ - for(rp=lemp->rule; rp; rp=rp->next){ - fprintf(out," case %d:\n",rp->index); lineno++; - fprintf(out," YYTRACE(\"%s ::=",rp->lhs->name); - for(i=0; inrhs; i++) fprintf(out," %s",rp->rhs[i]->name); - fprintf(out,"\")\n"); lineno++; - emit_code(out,rp,lemp,&lineno); - fprintf(out," break;\n"); lineno++; - } - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes if a parse fails */ - tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes when a syntax error occurs */ - tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Generate code which executes when the parser accepts its input */ - tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno); - tplt_xfer(lemp->name,in,out,&lineno); - - /* Append any addition code the user desires */ - tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno); - - fclose(in); - fclose(out); - return; -} - -/* Generate a header file for the parser */ -void ReportHeader(struct lemon *lemp) -{ - FILE *out, *in; - const char *prefix; - char line[LINESIZE]; - char pattern[LINESIZE]; - int i; - - if( lemp->tokenprefix ) prefix = lemp->tokenprefix; - else prefix = ""; - in = file_open(lemp,".h","r"); - if( in ){ - for(i=1; interminal && fgets(line,LINESIZE,in); i++){ - sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); - if( strcmp(line,pattern) ) break; - } - fclose(in); - if( i==lemp->nterminal ){ - /* No change in the file. Don't rewrite it. */ - return; - } - } - out = file_open(lemp,".h","w"); - if( out ){ - for(i=1; interminal; i++){ - fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); - } - fclose(out); - } - return; -} - -/* Reduce the size of the action tables, if possible, by making use -** of defaults. -** -** In this version, if all REDUCE actions use the same rule, make -** them the default. Only default them if there are more than one. -*/ -void CompressTables(struct lemon *lemp) -{ - struct state *stp; - struct action *ap; - struct rule *rp; - int i; - int cnt; - - for(i=0; instate; i++){ - stp = lemp->sorted[i]; - - /* Find the first REDUCE action */ - for(ap=stp->ap; ap && ap->type!=REDUCE; ap=ap->next); - if( ap==0 ) continue; - - /* Remember the rule used */ - rp = ap->x.rp; - - /* See if all other REDUCE acitons use the same rule */ - cnt = 1; - for(ap=ap->next; ap; ap=ap->next){ - if( ap->type==REDUCE ){ - if( ap->x.rp!=rp ) break; - cnt++; - } - } - if( ap || cnt==1 ) continue; - - /* Combine all REDUCE actions into a single default */ - for(ap=stp->ap; ap && ap->type!=REDUCE; ap=ap->next); - assert( ap ); - ap->sp = Symbol_new("{default}"); - for(ap=ap->next; ap; ap=ap->next){ - if( ap->type==REDUCE ) ap->type = NOT_USED; - } - stp->ap = Action_sort(stp->ap); - } -} -/***************** From the file "set.c" ************************************/ -/* -** Set manipulation routines for the LEMON parser generator. -*/ - -static int size = 0; - -/* Set the set size */ -void SetSize(int n) -{ - size = n+1; -} - -/* Allocate a new set */ -char *SetNew(void){ - char *s; - int i; - s = (char*)malloc( size ); - if( s==0 ){ - memory_error(); - } - for(i=0; isize = 1024; - x1a->count = 0; - x1a->tbl = (x1node*)malloc( - (sizeof(x1node) + sizeof(x1node*))*1024 ); - if( x1a->tbl==0 ){ - free(x1a); - x1a = 0; - }else{ - int i; - x1a->ht = (x1node**)&(x1a->tbl[1024]); - for(i=0; i<1024; i++) x1a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Strsafe_insert(char *data) -{ - x1node *np; - int h; - int ph; - - if( x1a==0 ) return 0; - ph = strhash(data); - h = ph & (x1a->size-1); - np = x1a->ht[h]; - while( np ){ - if( strcmp(np->data,data)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x1a->count>=x1a->size ){ - /* Need to make the hash table bigger */ - int i,mysize; - struct s_x1 array; - array.size = mysize = x1a->size*2; - array.count = x1a->count; - array.tbl = (x1node*)malloc( - (sizeof(x1node) + sizeof(x1node*))*mysize ); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x1node**)&(array.tbl[mysize]); - for(i=0; icount; i++){ - x1node *oldnp, *newnp; - oldnp = &(x1a->tbl[i]); - h = strhash(oldnp->data) & (mysize-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x1a->tbl); - *x1a = array; - } - /* Insert the new data */ - h = ph & (x1a->size-1); - np = &(x1a->tbl[x1a->count++]); - np->data = data; - if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); - np->next = x1a->ht[h]; - x1a->ht[h] = np; - np->from = &(x1a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -char *Strsafe_find(const char *key) -{ - int h; - x1node *np; - - if( x1a==0 ) return 0; - h = strhash(key) & (x1a->size-1); - np = x1a->ht[h]; - while( np ){ - if( strcmp(np->data,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return a pointer to the (terminal or nonterminal) symbol "x". -** Create a new symbol if this is the first time "x" has been seen. -*/ -struct symbol *Symbol_new(const char *x) -{ - struct symbol *sp; - - sp = Symbol_find(x); - if( sp==0 ){ - sp = (struct symbol *)malloc( sizeof(struct symbol) ); - MemoryCheck(sp); - sp->name = Strsafe(x); - sp->type = safe_isupper(*x) ? TERMINAL : NONTERMINAL; - sp->rule = 0; - sp->prec = -1; - sp->assoc = UNK; - sp->firstset = 0; - sp->lambda = BOOL_FALSE; - sp->destructor = 0; - sp->datatype = 0; - Symbol_insert(sp,sp->name); - } - return sp; -} - -/* Compare two symbols */ -int Symbolcmpp(const void *a_arg, const void *b_arg) -{ -/* MSVC complains about this, but it's wrong. GCC does not -complain about this, as is right. From Guy Harris: - -At least as I read the ANSI C spec, GCC is right and MSVC is wrong here. -The arguments are pointers to "const void", and should be cast to -pointers to "const struct symbol *"; however, at least as I read the -spec, "const struct symbol **" is "pointer to pointer to const struct -symbol", not "pointer to const pointer to struct symbol". -*/ - - struct symbol *const *a = a_arg; - struct symbol *const *b = b_arg; - - return strcmp((**a).name,(**b).name); -} - -/* There is one instance of the following structure for each -** associative array of type "x2". -*/ -struct s_x2 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x2node *tbl; /* The data stored here */ - struct s_x2node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x2". -*/ -typedef struct s_x2node { - struct symbol *data; /* The data */ - char *key; /* The key */ - struct s_x2node *next; /* Next entry with the same hash */ - struct s_x2node **from; /* Previous link */ -} x2node; - -/* There is only one instance of the array, which is the following */ -static struct s_x2 *x2a; - -/* Allocate a new associative array */ -void Symbol_init(void){ - if( x2a ) return; - x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); - if( x2a ){ - x2a->size = 128; - x2a->count = 0; - x2a->tbl = (x2node*)malloc( - (sizeof(x2node) + sizeof(x2node*))*128 ); - if( x2a->tbl==0 ){ - free(x2a); - x2a = 0; - }else{ - int i; - x2a->ht = (x2node**)&(x2a->tbl[128]); - for(i=0; i<128; i++) x2a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Symbol_insert(struct symbol *data, char *key) -{ - x2node *np; - int h; - int ph; - - if( x2a==0 ) return 0; - ph = strhash(key); - h = ph & (x2a->size-1); - np = x2a->ht[h]; - while( np ){ - if( strcmp(np->key,key)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x2a->count>=x2a->size ){ - /* Need to make the hash table bigger */ - int i,mysize; - struct s_x2 array; - array.size = mysize = x2a->size*2; - array.count = x2a->count; - array.tbl = (x2node*)malloc( - (sizeof(x2node) + sizeof(x2node*))*mysize ); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x2node**)&(array.tbl[mysize]); - for(i=0; icount; i++){ - x2node *oldnp, *newnp; - oldnp = &(x2a->tbl[i]); - h = strhash(oldnp->key) & (mysize-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->key = oldnp->key; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x2a->tbl); - *x2a = array; - } - /* Insert the new data */ - h = ph & (x2a->size-1); - np = &(x2a->tbl[x2a->count++]); - np->key = key; - np->data = data; - if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); - np->next = x2a->ht[h]; - x2a->ht[h] = np; - np->from = &(x2a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct symbol *Symbol_find(const char *key) -{ - int h; - x2node *np; - - if( x2a==0 ) return 0; - h = strhash(key) & (x2a->size-1); - np = x2a->ht[h]; - while( np ){ - if( strcmp(np->key,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return the n-th data. Return NULL if n is out of range. */ -struct symbol *Symbol_Nth(int n) -{ - struct symbol *data; - if( x2a && n>0 && n<=x2a->count ){ - data = x2a->tbl[n-1].data; - }else{ - data = 0; - } - return data; -} - -/* Return the size of the array */ -int Symbol_count(void) -{ - return x2a ? x2a->count : 0; -} - -/* Return an array of pointers to all data in the table. -** The array is obtained from malloc. Return NULL if memory allocation -** problems, or if the array is empty. */ -struct symbol **Symbol_arrayof(void) -{ - struct symbol **array; - int i,mysize; - if( x2a==0 ) return 0; - mysize = x2a->count; - array = (struct symbol **)malloc( sizeof(struct symbol *)*mysize ); - if( array ){ - for(i=0; itbl[i].data; - } - return array; -} - -/* Compare two configurations */ -int Configcmp(const void *a_arg, const void *b_arg) -{ - const struct config *a = a_arg, *b = b_arg; - int x; - x = a->rp->index - b->rp->index; - if( x==0 ) x = a->dot - b->dot; - return x; -} - -/* Compare two states */ -PRIVATE int statecmp(struct config *a, struct config *b) -{ - int rc; - for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ - rc = a->rp->index - b->rp->index; - if( rc==0 ) rc = a->dot - b->dot; - } - if( rc==0 ){ - if( a ) rc = 1; - if( b ) rc = -1; - } - return rc; -} - -/* Hash a state */ -PRIVATE int statehash(struct config *a) -{ - int h=0; - while( a ){ - h = h*571 + a->rp->index*37 + a->dot; - a = a->bp; - } - return h; -} - -/* Allocate a new state structure */ -struct state *State_new(void) -{ - struct state *new; - new = (struct state *)malloc( sizeof(struct state) ); - MemoryCheck(new); - return new; -} - -/* There is one instance of the following structure for each -** associative array of type "x3". -*/ -struct s_x3 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x3node *tbl; /* The data stored here */ - struct s_x3node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x3". -*/ -typedef struct s_x3node { - struct state *data; /* The data */ - struct config *key; /* The key */ - struct s_x3node *next; /* Next entry with the same hash */ - struct s_x3node **from; /* Previous link */ -} x3node; - -/* There is only one instance of the array, which is the following */ -static struct s_x3 *x3a; - -/* Allocate a new associative array */ -void State_init(void){ - if( x3a ) return; - x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); - if( x3a ){ - x3a->size = 128; - x3a->count = 0; - x3a->tbl = (x3node*)malloc( - (sizeof(x3node) + sizeof(x3node*))*128 ); - if( x3a->tbl==0 ){ - free(x3a); - x3a = 0; - }else{ - int i; - x3a->ht = (x3node**)&(x3a->tbl[128]); - for(i=0; i<128; i++) x3a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int State_insert(struct state *data, struct config *key) -{ - x3node *np; - int h; - int ph; - - if( x3a==0 ) return 0; - ph = statehash(key); - h = ph & (x3a->size-1); - np = x3a->ht[h]; - while( np ){ - if( statecmp(np->key,key)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x3a->count>=x3a->size ){ - /* Need to make the hash table bigger */ - int i,mysize; - struct s_x3 array; - array.size = mysize = x3a->size*2; - array.count = x3a->count; - array.tbl = (x3node*)malloc( - (sizeof(x3node) + sizeof(x3node*))*mysize ); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x3node**)&(array.tbl[mysize]); - for(i=0; icount; i++){ - x3node *oldnp, *newnp; - oldnp = &(x3a->tbl[i]); - h = statehash(oldnp->key) & (mysize-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->key = oldnp->key; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x3a->tbl); - *x3a = array; - } - /* Insert the new data */ - h = ph & (x3a->size-1); - np = &(x3a->tbl[x3a->count++]); - np->key = key; - np->data = data; - if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); - np->next = x3a->ht[h]; - x3a->ht[h] = np; - np->from = &(x3a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct state *State_find(struct config *key) -{ - int h; - x3node *np; - - if( x3a==0 ) return 0; - h = statehash(key) & (x3a->size-1); - np = x3a->ht[h]; - while( np ){ - if( statecmp(np->key,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Return an array of pointers to all data in the table. -** The array is obtained from malloc. Return NULL if memory allocation -** problems, or if the array is empty. */ -struct state **State_arrayof(void) -{ - struct state **array; - int i,mysize; - if( x3a==0 ) return 0; - mysize = x3a->count; - array = (struct state **)malloc( sizeof(struct state *)*mysize ); - if( array ){ - for(i=0; itbl[i].data; - } - return array; -} - -/* Hash a configuration */ -PRIVATE int confighash(struct config *a) -{ - int h=0; - h = h*571 + a->rp->index*37 + a->dot; - return h; -} - -/* There is one instance of the following structure for each -** associative array of type "x4". -*/ -struct s_x4 { - int size; /* The number of available slots. */ - /* Must be a power of 2 greater than or */ - /* equal to 1 */ - int count; /* Number of currently slots filled */ - struct s_x4node *tbl; /* The data stored here */ - struct s_x4node **ht; /* Hash table for lookups */ -}; - -/* There is one instance of this structure for every data element -** in an associative array of type "x4". -*/ -typedef struct s_x4node { - struct config *data; /* The data */ - struct s_x4node *next; /* Next entry with the same hash */ - struct s_x4node **from; /* Previous link */ -} x4node; - -/* There is only one instance of the array, which is the following */ -static struct s_x4 *x4a; - -/* Allocate a new associative array */ -void Configtable_init(void){ - if( x4a ) return; - x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); - if( x4a ){ - x4a->size = 64; - x4a->count = 0; - x4a->tbl = (x4node*)malloc( - (sizeof(x4node) + sizeof(x4node*))*64 ); - if( x4a->tbl==0 ){ - free(x4a); - x4a = 0; - }else{ - int i; - x4a->ht = (x4node**)&(x4a->tbl[64]); - for(i=0; i<64; i++) x4a->ht[i] = 0; - } - } -} -/* Insert a new record into the array. Return TRUE if successful. -** Prior data with the same key is NOT overwritten */ -int Configtable_insert(struct config *data) -{ - x4node *np; - int h; - int ph; - - if( x4a==0 ) return 0; - ph = confighash(data); - h = ph & (x4a->size-1); - np = x4a->ht[h]; - while( np ){ - if( Configcmp(np->data,data)==0 ){ - /* An existing entry with the same key is found. */ - /* Fail because overwrite is not allows. */ - return 0; - } - np = np->next; - } - if( x4a->count>=x4a->size ){ - /* Need to make the hash table bigger */ - int i,mysize; - struct s_x4 array; - array.size = mysize = x4a->size*2; - array.count = x4a->count; - array.tbl = (x4node*)malloc( - (sizeof(x4node) + sizeof(x4node*))*mysize ); - if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ - array.ht = (x4node**)&(array.tbl[mysize]); - for(i=0; icount; i++){ - x4node *oldnp, *newnp; - oldnp = &(x4a->tbl[i]); - h = confighash(oldnp->data) & (mysize-1); - newnp = &(array.tbl[i]); - if( array.ht[h] ) array.ht[h]->from = &(newnp->next); - newnp->next = array.ht[h]; - newnp->data = oldnp->data; - newnp->from = &(array.ht[h]); - array.ht[h] = newnp; - } - free(x4a->tbl); - *x4a = array; - } - /* Insert the new data */ - h = ph & (x4a->size-1); - np = &(x4a->tbl[x4a->count++]); - np->data = data; - if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); - np->next = x4a->ht[h]; - x4a->ht[h] = np; - np->from = &(x4a->ht[h]); - return 1; -} - -/* Return a pointer to data assigned to the given key. Return NULL -** if no such key. */ -struct config *Configtable_find(struct config *key) -{ - int h; - x4node *np; - - if( x4a==0 ) return 0; - h = confighash(key) & (x4a->size-1); - np = x4a->ht[h]; - while( np ){ - if( Configcmp(np->data,key)==0 ) break; - np = np->next; - } - return np ? np->data : 0; -} - -/* Remove all data from the table. Pass each data to the function "f" -** as it is removed. ("f" may be null to avoid this step.) */ -void Configtable_clear(int(*f)(struct config *)) -{ - int i; - if( x4a==0 || x4a->count==0 ) return; - if( f ) for(i=0; icount; i++) (*f)(x4a->tbl[i].data); - for(i=0; isize; i++) x4a->ht[i] = 0; - x4a->count = 0; - return; -} diff --git a/tools/lemon/lemon.html b/tools/lemon/lemon.html deleted file mode 100644 index 9b4648f4..00000000 --- a/tools/lemon/lemon.html +++ /dev/null @@ -1,861 +0,0 @@ - - -The Lemon Parser Generator - - -

The Lemon Parser Generator

- -

Lemon is an LALR(1) parser generator for C or C++. -It does the same job as ``bison'' and ``yacc''. -But lemon is not another bison or yacc clone. It -uses a different grammar syntax which is designed to -reduce the number of coding errors. Lemon also uses a more -sophisticated parsing engine that is faster than yacc and -bison and which is both reentrant and thread-safe. -Furthermore, Lemon implements features that can be used -to eliminate resource leaks, making is suitable for use -in long-running programs such as graphical user interfaces -or embedded controllers.

- -

This document is an introduction to the Lemon -parser generator.

- -

Theory of Operation

- -

The main goal of Lemon is to translate a context free grammar (CFG) -for a particular language into C code that implements a parser for -that language. -The program has two inputs: -

    -
  • The grammar specification. -
  • A parser template file. -
-Typically, only the grammar specification is supplied by the programmer. -Lemon comes with a default parser template which works fine for most -applications. But the user is free to substitute a different parser -template if desired.

- -

Depending on command-line options, Lemon will generate between -one and three files of outputs. -

    -
  • C code to implement the parser. -
  • A header file defining an integer ID for each terminal symbol. -
  • An information file that describes the states of the generated parser - automaton. -
-By default, all three of these output files are generated. -The header file is suppressed if the ``-m'' command-line option is -used and the report file is omitted when ``-q'' is selected.

- -

The grammar specification file uses a ``.y'' suffix, by convention. -In the examples used in this document, we'll assume the name of the -grammar file is ``gram.y''. A typical use of Lemon would be the -following command: -

-   lemon gram.y
-
-This command will generate three output files named ``gram.c'', -``gram.h'' and ``gram.out''. -The first is C code to implement the parser. The second -is the header file that defines numerical values for all -terminal symbols, and the last is the report that explains -the states used by the parser automaton.

- -

Command Line Options

- -

The behavior of Lemon can be modified using command-line options. -You can obtain a list of the available command-line options together -with a brief explanation of what each does by typing -

-   lemon -?
-
-As of this writing, the following command-line options are supported: -
    -
  • -b -
  • -c -
  • -g -
  • -m -
  • -q -
  • -s -
  • -x -
-The ``-b'' option reduces the amount of text in the report file by -printing only the basis of each parser state, rather than the full -configuration. -The ``-c'' option suppresses action table compression. Using -c -will make the parser a little larger and slower but it will detect -syntax errors sooner. -The ``-g'' option causes no output files to be generated at all. -Instead, the input grammar file is printed on standard output but -with all comments, actions and other extraneous text deleted. This -is a useful way to get a quick summary of a grammar. -The ``-m'' option causes the output C source file to be compatible -with the ``makeheaders'' program. -Makeheaders is a program that automatically generates header files -from C source code. When the ``-m'' option is used, the header -file is not output since the makeheaders program will take care -of generated all header files automatically. -The ``-q'' option suppresses the report file. -Using ``-s'' causes a brief summary of parser statistics to be -printed. Like this: -
-   Parser statistics: 74 terminals, 70 nonterminals, 179 rules
-                      340 states, 2026 parser table entries, 0 conflicts
-
-Finally, the ``-x'' option causes Lemon to print its version number -and copyright information -and then stop without attempting to read the grammar or generate a parser.

- -

The Parser Interface

- -

Lemon doesn't generate a complete, working program. It only generates -a few subroutines that implement a parser. This section describes -the interface to those subroutines. It is up to the programmer to -call these subroutines in an appropriate way in order to produce a -complete system.

- -

Before a program begins using a Lemon-generated parser, the program -must first create the parser. -A new parser is created as follows: -

-   void *pParser = ParseAlloc( malloc );
-
-The ParseAlloc() routine allocates and initializes a new parser and -returns a pointer to it. -The actual data structure used to represent a parser is opaque -- -its internal structure is not visible or usable by the calling routine. -For this reason, the ParseAlloc() routine returns a pointer to void -rather than a pointer to some particular structure. -The sole argument to the ParseAlloc() routine is a pointer to the -subroutine used to allocate memory. Typically this means ``malloc()''.

- -

After a program is finished using a parser, it can reclaim all -memory allocated by that parser by calling -

-   ParseFree(pParser, free);
-
-The first argument is the same pointer returned by ParseAlloc(). The -second argument is a pointer to the function used to release bulk -memory back to the system.

- -

After a parser has been allocated using ParseAlloc(), the programmer -must supply the parser with a sequence of tokens (terminal symbols) to -be parsed. This is accomplished by calling the following function -once for each token: -

-   Parse(pParser, hTokenID, sTokenData, pArg);
-
-The first argument to the Parse() routine is the pointer returned by -ParseAlloc(). -The second argument is a small positive integer that tells the parse the -type of the next token in the data stream. -There is one token type for each terminal symbol in the grammar. -The gram.h file generated by Lemon contains #define statements that -map symbolic terminal symbol names into appropriate integer values. -(A value of 0 for the second argument is a special flag to the -parser to indicate that the end of input has been reached.) -The third argument is the value of the given token. By default, -the type of the third argument is integer, but the grammar will -usually redefine this type to be some kind of structure. -Typically the second argument will be a broad category of tokens -such as ``identifier'' or ``number'' and the third argument will -be the name of the identifier or the value of the number.

- -

The Parse() function may have either three or four arguments, -depending on the grammar. If the grammar specification file request -it, the Parse() function will have a fourth parameter that can be -of any type chosen by the programmer. The parser doesn't do anything -with this argument except to pass it through to action routines. -This is a convenient mechanism for passing state information down -to the action routines without having to use global variables.

- -

A typical use of a Lemon parser might look something like the -following: -

-   01 ParseTree *ParseFile(const char *zFilename){
-   02    Tokenizer *pTokenizer;
-   03    void *pParser;
-   04    Token sToken;
-   05    int hTokenId;
-   06    ParserState sState;
-   07
-   08    pTokenizer = TokenizerCreate(zFilename);
-   09    pParser = ParseAlloc( malloc );
-   10    InitParserState(&sState);
-   11    while( GetNextToken(pTokenizer, &hTokenId, &sToken) ){
-   12       Parse(pParser, hTokenId, sToken, &sState);
-   13    }
-   14    Parse(pParser, 0, sToken, &sState);
-   15    ParseFree(pParser, free );
-   16    TokenizerFree(pTokenizer);
-   17    return sState.treeRoot;
-   18 }
-
-This example shows a user-written routine that parses a file of -text and returns a pointer to the parse tree. -(We've omitted all error-handling from this example to keep it -simple.) -We assume the existence of some kind of tokenizer which is created -using TokenizerCreate() on line 8 and deleted by TokenizerFree() -on line 16. The GetNextToken() function on line 11 retrieves the -next token from the input file and puts its type in the -integer variable hTokenId. The sToken variable is assumed to be -some kind of structure that contains details about each token, -such as its complete text, what line it occurs on, etc.

- -

This example also assumes the existence of structure of type -ParserState that holds state information about a particular parse. -An instance of such a structure is created on line 6 and initialized -on line 10. A pointer to this structure is passed into the Parse() -routine as the optional 4th argument. -The action routine specified by the grammar for the parser can use -the ParserState structure to hold whatever information is useful and -appropriate. In the example, we note that the treeRoot field of -the ParserState structure is left pointing to the root of the parse -tree.

- -

The core of this example as it relates to Lemon is as follows: -

-   ParseFile(){
-      pParser = ParseAlloc( malloc );
-      while( GetNextToken(pTokenizer,&hTokenId, &sToken) ){
-         Parse(pParser, hTokenId, sToken);
-      }
-      Parse(pParser, 0, sToken);
-      ParseFree(pParser, free );
-   }
-
-Basically, what a program has to do to use a Lemon-generated parser -is first create the parser, then send it lots of tokens obtained by -tokenizing an input source. When the end of input is reached, the -Parse() routine should be called one last time with a token type -of 0. This step is necessary to inform the parser that the end of -input has been reached. Finally, we reclaim memory used by the -parser by calling ParseFree().

- -

There is one other interface routine that should be mentioned -before we move on. -The ParseTrace() function can be used to generate debugging output -from the parser. A prototype for this routine is as follows: -

-   ParseTrace(FILE *stream, char *zPrefix);
-
-After this routine is called, a short (one-line) message is written -to the designated output stream every time the parser changes states -or calls an action routine. Each such message is prefaced using -the text given by zPrefix. This debugging output can be turned off -by calling ParseTrace() again with a first argument of NULL (0).

- -

Differences With YACC and BISON

- -

Programmers who have previously used the yacc or bison parser -generator will notice several important differences between yacc and/or -bison and Lemon. -

    -
  • In yacc and bison, the parser calls the tokenizer. In Lemon, - the tokenizer calls the parser. -
  • Lemon uses no global variables. Yacc and bison use global variables - to pass information between the tokenizer and parser. -
  • Lemon allows multiple parsers to be running simultaneously. Yacc - and bison do not. -
-These differences may cause some initial confusion for programmers -with prior yacc and bison experience. -But after years of experience using Lemon, I firmly -believe that the Lemon way of doing things is better.

- -

Input File Syntax

- -

The main purpose of the grammar specification file for Lemon is -to define the grammar for the parser. But the input file also -specifies additional information Lemon requires to do its job. -Most of the work in using Lemon is in writing an appropriate -grammar file.

- -

The grammar file for lemon is, for the most part, free format. -It does not have sections or divisions like yacc or bison. Any -declaration can occur at any point in the file. -Lemon ignores whitespace (except where it is needed to separate -tokens) and it honors the same commenting conventions as C and C++.

- -

Terminals and Nonterminals

- -

A terminal symbol (token) is any string of alphanumeric -and underscore characters -that begins with an upper case letter. -A terminal can contain lower class letters after the first character, -but the usual convention is to make terminals all upper case. -A nonterminal, on the other hand, is any string of alphanumeric -and underscore characters than begins with a lower case letter. -Again, the usual convention is to make nonterminals use all lower -case letters.

- -

In Lemon, terminal and nonterminal symbols do not need to -be declared or identified in a separate section of the grammar file. -Lemon is able to generate a list of all terminals and nonterminals -by examining the grammar rules, and it can always distinguish a -terminal from a nonterminal by checking the case of the first -character of the name.

- -

Yacc and bison allow terminal symbols to have either alphanumeric -names or to be individual characters included in single quotes, like -this: ')' or '$'. Lemon does not allow this alternative form for -terminal symbols. With Lemon, all symbols, terminals and nonterminals, -must have alphanumeric names.

- -

Grammar Rules

- -

The main component of a Lemon grammar file is a sequence of grammar -rules. -Each grammar rule consists of a nonterminal symbol followed by -the special symbol ``::='' and then a list of terminals and/or nonterminals. -The rule is terminated by a period. -The list of terminals and nonterminals on the right-hand side of the -rule can be empty. -Rules can occur in any order, except that the left-hand side of the -first rule is assumed to be the start symbol for the grammar (unless -specified otherwise using the %start directive described below.) -A typical sequence of grammar rules might look something like this: -

-  expr ::= expr PLUS expr.
-  expr ::= expr TIMES expr.
-  expr ::= LPAREN expr RPAREN.
-  expr ::= VALUE.
-
-

- -

There is one non-terminal in this example, ``expr'', and five -terminal symbols or tokens: ``PLUS'', ``TIMES'', ``LPAREN'', -``RPAREN'' and ``VALUE''.

- -

Like yacc and bison, Lemon allows the grammar to specify a block -of C code that will be executed whenever a grammar rule is reduced -by the parser. -In Lemon, this action is specified by putting the C code (contained -within curly braces {...}) immediately after the -period that closes the rule. -For example: -

-  expr ::= expr PLUS expr.   { printf("Doing an addition...\n"); }
-
-

- -

In order to be useful, grammar actions must normally be linked to -their associated grammar rules. -In yacc and bison, this is accomplished by embedding a ``$$'' in the -action to stand for the value of the left-hand side of the rule and -symbols ``$1'', ``$2'', and so forth to stand for the value of -the terminal or nonterminal at position 1, 2 and so forth on the -right-hand side of the rule. -This idea is very powerful, but it is also very error-prone. The -single most common source of errors in a yacc or bison grammar is -to miscount the number of symbols on the right-hand side of a grammar -rule and say ``$7'' when you really mean ``$8''.

- -

Lemon avoids the need to count grammar symbols by assigning symbolic -names to each symbol in a grammar rule and then using those symbolic -names in the action. -In yacc or bison, one would write this: -

-  expr -> expr PLUS expr  { $$ = $1 + $3; };
-
-But in Lemon, the same rule becomes the following: -
-  expr(A) ::= expr(B) PLUS expr(C).  { A = B+C; }
-
-In the Lemon rule, any symbol in parentheses after a grammar rule -symbol becomes a place holder for that symbol in the grammar rule. -This place holder can then be used in the associated C action to -stand for the value of that symbol.

- -

The Lemon notation for linking a grammar rule with its reduce -action is superior to yacc/bison on several counts. -First, as mentioned above, the Lemon method avoids the need to -count grammar symbols. -Secondly, if a terminal or nonterminal in a Lemon grammar rule -includes a linking symbol in parentheses but that linking symbol -is not actually used in the reduce action, then an error message -is generated. -For example, the rule -

-  expr(A) ::= expr(B) PLUS expr(C).  { A = B; }
-
-will generate an error because the linking symbol ``C'' is used -in the grammar rule but not in the reduce action.

- -

The Lemon notation for linking grammar rules to reduce actions -also facilitates the use of destructors for reclaiming memory -allocated by the values of terminals and nonterminals on the -right-hand side of a rule.

- -

Precedence Rules

- -

Lemon resolves parsing ambiguities in exactly the same way as -yacc and bison. A shift-reduce conflict is resolved in favor -of the shift, and a reduce-reduce conflict is resolved by reducing -whichever rule comes first in the grammar file.

- -

Just like in -yacc and bison, Lemon allows a measure of control -over the resolution of paring conflicts using precedence rules. -A precedence value can be assigned to any terminal symbol -using the %left, %right or %nonassoc directives. Terminal symbols -mentioned in earlier directives have a lower precedence that -terminal symbols mentioned in later directives. For example:

- -

-   %left AND.
-   %left OR.
-   %nonassoc EQ NE GT GE LT LE.
-   %left PLUS MINUS.
-   %left TIMES DIVIDE MOD.
-   %right EXP NOT.
-

- -

In the preceding sequence of directives, the AND operator is -defined to have the lowest precedence. The OR operator is one -precedence level higher. And so forth. Hence, the grammar would -attempt to group the ambiguous expression -

-     a AND b OR c
-
-like this -
-     a AND (b OR c).
-
-The associativity (left, right or nonassoc) is used to determine -the grouping when the precedence is the same. AND is left-associative -in our example, so -
-     a AND b AND c
-
-is parsed like this -
-     (a AND b) AND c.
-
-The EXP operator is right-associative, though, so -
-     a EXP b EXP c
-
-is parsed like this -
-     a EXP (b EXP c).
-
-The nonassoc precedence is used for non-associative operators. -So -
-     a EQ b EQ c
-
-is an error.

- -

The precedence of non-terminals is transferred to rules as follows: -The precedence of a grammar rule is equal to the precedence of the -left-most terminal symbol in the rule for which a precedence is -defined. This is normally what you want, but in those cases where -you want to precedence of a grammar rule to be something different, -you can specify an alternative precedence symbol by putting the -symbol in square braces after the period at the end of the rule and -before any C-code. For example:

- -

-   expr = MINUS expr.  [NOT]
-

- -

This rule has a precedence equal to that of the NOT symbol, not the -MINUS symbol as would have been the case by default.

- -

With the knowledge of how precedence is assigned to terminal -symbols and individual -grammar rules, we can now explain precisely how parsing conflicts -are resolved in Lemon. Shift-reduce conflicts are resolved -as follows: -

    -
  • If either the token to be shifted or the rule to be reduced - lacks precedence information, then resolve in favor of the - shift, but report a parsing conflict. -
  • If the precedence of the token to be shifted is greater than - the precedence of the rule to reduce, then resolve in favor - of the shift. No parsing conflict is reported. -
  • If the precedence of the token it be shifted is less than the - precedence of the rule to reduce, then resolve in favor of the - reduce action. No parsing conflict is reported. -
  • If the precedences are the same and the shift token is - right-associative, then resolve in favor of the shift. - No parsing conflict is reported. -
  • If the precedences are the same the the shift token is - left-associative, then resolve in favor of the reduce. - No parsing conflict is reported. -
  • Otherwise, resolve the conflict by doing the shift and - report the parsing conflict. -
-Reduce-reduce conflicts are resolved this way: -
    -
  • If either reduce rule - lacks precedence information, then resolve in favor of the - rule that appears first in the grammar and report a parsing - conflict. -
  • If both rules have precedence and the precedence is different - then resolve the dispute in favor of the rule with the highest - precedence and do not report a conflict. -
  • Otherwise, resolve the conflict by reducing by the rule that - appears first in the grammar and report a parsing conflict. -
- -

Special Directives

- -

The input grammar to Lemon consists of grammar rules and special -directives. We've described all the grammar rules, so now we'll -talk about the special directives.

- -

Directives in lemon can occur in any order. You can put them before -the grammar rules, or after the grammar rules, or in the mist of the -grammar rules. It doesn't matter. The relative order of -directives used to assign precedence to terminals is important, but -other than that, the order of directives in Lemon is arbitrary.

- -

Lemon supports the following special directives: -

    -
  • %destructor -
  • %extra_argument -
  • %include -
  • %left -
  • %name -
  • %nonassoc -
  • %parse_accept -
  • %parse_failure -
  • %right -
  • %stack_overflow -
  • %stack_size -
  • %start_symbol -
  • %syntax_error -
  • %token_destructor -
  • %token_prefix -
  • %token_type -
  • %type -
-Each of these directives will be described separately in the -following sections:

- -

The %destructor directive

- -

The %destructor directive is used to specify a destructor for -a non-terminal symbol. -(See also the %token_destructor directive which is used to -specify a destructor for terminal symbols.)

- -

A non-terminal's destructor is called to dispose of the -non-terminal's value whenever the non-terminal is popped from -the stack. This includes all of the following circumstances: -

    -
  • When a rule reduces and the value of a non-terminal on - the right-hand side is not linked to C code. -
  • When the stack is popped during error processing. -
  • When the ParseFree() function runs. -
-The destructor can do whatever it wants with the value of -the non-terminal, but its design is to deallocate memory -or other resources held by that non-terminal.

- -

Consider an example: -

-   %type nt {void*}
-   %destructor nt { free($$); }
-   nt(A) ::= ID NUM.   { A = malloc( 100 ); }
-
-This example is a bit contrived but it serves to illustrate how -destructors work. The example shows a non-terminal named -``nt'' that holds values of type ``void*''. When the rule for -an ``nt'' reduces, it sets the value of the non-terminal to -space obtained from malloc(). Later, when the nt non-terminal -is popped from the stack, the destructor will fire and call -free() on this malloced space, thus avoiding a memory leak. -(Note that the symbol ``$$'' in the destructor code is replaced -by the value of the non-terminal.)

- -

It is important to note that the value of a non-terminal is passed -to the destructor whenever the non-terminal is removed from the -stack, unless the non-terminal is used in a C-code action. If -the non-terminal is used by C-code, then it is assumed that the -C-code will take care of destroying it if it should really -be destroyed. More commonly, the value is used to build some -larger structure and we don't want to destroy it, which is why -the destructor is not called in this circumstance.

- -

By appropriate use of destructors, it is possible to -build a parser using Lemon that can be used within a long-running -program, such as a GUI, that will not leak memory or other resources. -To do the same using yacc or bison is much more difficult.

- -

The %extra_argument directive

- -The %extra_argument directive instructs Lemon to add a 4th parameter -to the parameter list of the Parse() function it generates. Lemon -doesn't do anything itself with this extra argument, but it does -make the argument available to C-code action routines, destructors, -and so forth. For example, if the grammar file contains:

- -

-    %extra_argument { MyStruct *pAbc }
-

- -

Then the Parse() function generated will have an 4th parameter -of type ``MyStruct*'' and all action routines will have access to -a variable named ``pAbc'' that is the value of the 4th parameter -in the most recent call to Parse().

- -

The %include directive

- -

The %include directive specifies C code that is included at the -top of the generated parser. You can include any text you want -- -the Lemon parser generator copies to blindly. If you have multiple -%include directives in your grammar file, their values are concatenated -before being put at the beginning of the generated parser.

- -

The %include directive is very handy for getting some extra #include -preprocessor statements at the beginning of the generated parser. -For example:

- -

-   %include {#include <unistd.h>}
-

- -

This might be needed, for example, if some of the C actions in the -grammar call functions that are prototyed in unistd.h.

- -

The %left directive

- -The %left directive is used (along with the %right and -%nonassoc directives) to declare precedences of terminal -symbols. Every terminal symbol whose name appears after -a %left directive but before the next period (``.'') is -given the same left-associative precedence value. Subsequent -%left directives have higher precedence. For example:

- -

-   %left AND.
-   %left OR.
-   %nonassoc EQ NE GT GE LT LE.
-   %left PLUS MINUS.
-   %left TIMES DIVIDE MOD.
-   %right EXP NOT.
-

- -

Note the period that terminates each %left, %right or %nonassoc -directive.

- -

LALR(1) grammars can get into a situation where they require -a large amount of stack space if you make heavy use or right-associative -operators. For this reason, it is recommended that you use %left -rather than %right whenever possible.

- -

The %name directive

- -

By default, the functions generated by Lemon all begin with the -five-character string ``Parse''. You can change this string to something -different using the %name directive. For instance:

- -

-   %name Abcde
-

- -

Putting this directive in the grammar file will cause Lemon to generate -functions named -

    -
  • AbcdeAlloc(), -
  • AbcdeFree(), -
  • AbcdeTrace(), and -
  • Abcde(). -
-The %name directive allows you to generator two or more different -parsers and link them all into the same executable. -

- -

The %nonassoc directive

- -

This directive is used to assign non-associative precedence to -one or more terminal symbols. See the section on precedence rules -or on the %left directive for additional information.

- -

The %parse_accept directive

- -

The %parse_accept directive specifies a block of C code that is -executed whenever the parser accepts its input string. To ``accept'' -an input string means that the parser was able to process all tokens -without error.

- -

For example:

- -

-   %parse_accept {
-      printf("parsing complete!\n");
-   }
-

- - -

The %parse_failure directive

- -

The %parse_failure directive specifies a block of C code that -is executed whenever the parser fails complete. This code is not -executed until the parser has tried and failed to resolve an input -error using is usual error recovery strategy. The routine is -only invoked when parsing is unable to continue.

- -

-   %parse_failure {
-     fprintf(stderr,"Giving up.  Parser is hopelessly lost...\n");
-   }
-

- -

The %right directive

- -

This directive is used to assign right-associative precedence to -one or more terminal symbols. See the section on precedence rules -or on the %left directive for additional information.

- -

The %stack_overflow directive

- -

The %stack_overflow directive specifies a block of C code that -is executed if the parser's internal stack ever overflows. Typically -this just prints an error message. After a stack overflow, the parser -will be unable to continue and must be reset.

- -

-   %stack_overflow {
-     fprintf(stderr,"Giving up.  Parser stack overflow\n");
-   }
-

- -

You can help prevent parser stack overflows by avoiding the use -of right recursion and right-precedence operators in your grammar. -Use left recursion and and left-precedence operators instead, to -encourage rules to reduce sooner and keep the stack size down. -For example, do rules like this: -

-   list ::= list element.      // left-recursion.  Good!
-   list ::= .
-
-Not like this: -
-   list ::= element list.      // right-recursion.  Bad!
-   list ::= .
-
- -

The %stack_size directive

- -

If stack overflow is a problem and you can't resolve the trouble -by using left-recursion, then you might want to increase the size -of the parser's stack using this directive. Put an positive integer -after the %stack_size directive and Lemon will generate a parse -with a stack of the requested size. The default value is 100.

- -

-   %stack_size 2000
-

- -

The %start_symbol directive

- -

By default, the start-symbol for the grammar that Lemon generates -is the first non-terminal that appears in the grammar file. But you -can choose a different start-symbol using the %start_symbol directive.

- -

-   %start_symbol  prog
-

- -

The %token_destructor directive

- -

The %destructor directive assigns a destructor to a non-terminal -symbol. (See the description of the %destructor directive above.) -This directive does the same thing for all terminal symbols.

- -

Unlike non-terminal symbols which may each have a different data type -for their values, terminals all use the same data type (defined by -the %token_type directive) and so they use a common destructor. Other -than that, the token destructor works just like the non-terminal -destructors.

- -

The %token_prefix directive

- -

Lemon generates #defines that assign small integer constants -to each terminal symbol in the grammar. If desired, Lemon will -add a prefix specified by this directive -to each of the #defines it generates. -So if the default output of Lemon looked like this: -

-    #define AND              1
-    #define MINUS            2
-    #define OR               3
-    #define PLUS             4
-
-You can insert a statement into the grammar like this: -
-    %token_prefix    TOKEN_
-
-to cause Lemon to produce these symbols instead: -
-    #define TOKEN_AND        1
-    #define TOKEN_MINUS      2
-    #define TOKEN_OR         3
-    #define TOKEN_PLUS       4
-
- -

The %token_type and %type directives

- -

These directives are used to specify the data types for values -on the parser's stack associated with terminal and non-terminal -symbols. The values of all terminal symbols must be of the same -type. This turns out to be the same data type as the 3rd parameter -to the Parse() function generated by Lemon. Typically, you will -make the value of a terminal symbol by a pointer to some kind of -token structure. Like this:

- -

-   %token_type    {Token*}
-

- -

If the data type of terminals is not specified, the default value -is ``int''.

- -

Non-terminal symbols can each have their own data types. Typically -the data type of a non-terminal is a pointer to the root of a parse-tree -structure that contains all information about that non-terminal. -For example:

- -

-   %type   expr  {Expr*}
-

- -

Each entry on the parser's stack is actually a union containing -instances of all data types for every non-terminal and terminal symbol. -Lemon will automatically use the correct element of this union depending -on what the corresponding non-terminal or terminal symbol is. But -the grammar designer should keep in mind that the size of the union -will be the size of its largest element. So if you have a single -non-terminal whose data type requires 1K of storage, then your 100 -entry parser stack will require 100K of heap space. If you are willing -and able to pay that price, fine. You just need to know.

- -

Error Processing

- -

After extensive experimentation over several years, it has been -discovered that the error recovery strategy used by yacc is about -as good as it gets. And so that is what Lemon uses.

- -

When a Lemon-generated parser encounters a syntax error, it -first invokes the code specified by the %syntax_error directive, if -any. It then enters its error recovery strategy. The error recovery -strategy is to begin popping the parsers stack until it enters a -state where it is permitted to shift a special non-terminal symbol -named ``error''. It then shifts this non-terminal and continues -parsing. But the %syntax_error routine will not be called again -until at least three new tokens have been successfully shifted.

- -

If the parser pops its stack until the stack is empty, and it still -is unable to shift the error symbol, then the %parse_failed routine -is invoked and the parser resets itself to its start state, ready -to begin parsing a new file. This is what will happen at the very -first syntax error, of course, if there are no instances of the -``error'' non-terminal in your grammar.

- - - diff --git a/tools/lemon/lempar.c b/tools/lemon/lempar.c deleted file mode 100644 index 4c86b530..00000000 --- a/tools/lemon/lempar.c +++ /dev/null @@ -1,600 +0,0 @@ -/* Driver template for the LEMON parser generator. -** Copyright 1991-1995 by D. Richard Hipp. -** -** This library is free software; you can redistribute it and/or -** modify it under the terms of the GNU Library General Public -** License as published by the Free Software Foundation; either -** version 2 of the License, or (at your option) any later version. -** -** This library is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -** Library General Public License for more details. -** -** You should have received a copy of the GNU Library General Public -** License along with this library; if not, write to the -** Free Software Foundation, Inc., 59 Temple Place - Suite 330, -** Boston, MA 02111-1307, USA. -** -** Modified 1997 to make it suitable for use with makeheaders. -** -** $IdPath$ -*/ -/* First off, code is include which follows the "include" declaration -** in the input file. */ -#include -%% -/* Next is all token values, in a form suitable for use by makeheaders. -** This section will be null unless lemon is run with the -m switch. -*/ -/* -** These constants (all generated automatically by the parser generator) -** specify the various kinds of tokens (terminals) that the parser -** understands. -** -** Each symbol here is a terminal symbol in the grammar. -*/ -%% -/* Make sure the INTERFACE macro is defined. -*/ -#ifndef INTERFACE -# define INTERFACE 1 -#endif -/* The next thing included is series of defines which control -** various aspects of the generated parser. -** YYCODETYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 terminals -** and nonterminals. "int" is used otherwise. -** YYNOCODE is a number of type YYCODETYPE which corresponds -** to no legal terminal or nonterminal number. This -** number is used to fill in empty slots of the hash -** table. -** YYACTIONTYPE is the data type used for storing terminal -** and nonterminal numbers. "unsigned char" is -** used if there are fewer than 250 rules and -** states combined. "int" is used otherwise. -** ParseTOKENTYPE is the data type used for minor tokens given -** directly to the parser from the tokenizer. -** YYMINORTYPE is the data type used for all minor tokens. -** This is typically a union of many types, one of -** which is ParseTOKENTYPE. The entry in the union -** for base tokens is called "yy0". -** YYSTACKDEPTH is the maximum depth of the parser's stack. -** ParseARGDECL is a declaration of a 3rd argument to the -** parser, or null if there is no extra argument. -** ParseKRARGDECL A version of ParseARGDECL for K&R C. -** ParseANSIARGDECL A version of ParseARGDECL for ANSI C. -** YYNSTATE the combined number of states. -** YYNRULE the number of rules in the grammar -** YYERRORSYMBOL is the code number of the error symbol. If not -** defined, then do no error processing. -*/ -%% -#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) -#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) -#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) -/* Next is the action table. Each entry in this table contains -** -** + An integer which is the number representing the look-ahead -** token -** -** + An integer indicating what action to take. Number (N) between -** 0 and YYNSTATE-1 mean shift the look-ahead and go to state N. -** Numbers between YYNSTATE and YYNSTATE+YYNRULE-1 mean reduce by -** rule N-YYNSTATE. Number YYNSTATE+YYNRULE means that a syntax -** error has occurred. Number YYNSTATE+YYNRULE+1 means the parser -** accepts its input. -** -** + A pointer to the next entry with the same hash value. -** -** The action table is really a series of hash tables. Each hash -** table contains a number of entries which is a power of two. The -** "state" table (which follows) contains information about the starting -** point and size of each hash table. -*/ -struct yyActionEntry { - YYCODETYPE lookahead; /* The value of the look-ahead token */ - YYACTIONTYPE action; /* Action to take for this look-ahead */ - struct yyActionEntry *next; /* Next look-ahead with the same hash, or NULL */ -}; -static struct yyActionEntry yyActionTable[] = { -%% -}; - -/* The state table contains information needed to look up the correct -** action in the action table, given the current state of the parser. -** Information needed includes: -** -** + A pointer to the start of the action hash table in yyActionTable. -** -** + A mask used to hash the look-ahead token. The mask is an integer -** which is one less than the size of the hash table. -** -** + The default action. This is the action to take if no entry for -** the given look-ahead is found in the action hash table. -*/ -struct yyStateEntry { - struct yyActionEntry *hashtbl; /* Start of the hash table in yyActionTable */ - int mask; /* Mask used for hashing the look-ahead */ - YYACTIONTYPE actionDefault; /* Default action if look-ahead not found */ -}; -static struct yyStateEntry yyStateTable[] = { -%% -}; - -/* The following structure represents a single element of the -** parser's stack. Information stored includes: -** -** + The state number for the parser at this level of the stack. -** -** + The value of the token stored at this level of the stack. -** (In other words, the "major" token.) -** -** + The semantic value stored at this level of the stack. This is -** the information used by the action routines in the grammar. -** It is sometimes called the "minor" token. -*/ -struct yyStackEntry { - int stateno; /* The state-number */ - int major; /* The major token value. This is the code - ** number for the token at this stack level */ - YYMINORTYPE minor; /* The user-supplied minor token value. This - ** is the value of the token */ -}; - -/* The state of the parser is completely contained in an instance of -** the following structure */ -struct yyParser { - int idx; /* Index of top element in stack */ - int errcnt; /* Shifts left before out of the error */ - struct yyStackEntry *top; /* Pointer to the top stack element */ - struct yyStackEntry stack[YYSTACKDEPTH]; /* The parser's stack */ -}; -typedef struct yyParser yyParser; - -#ifndef NDEBUG -#include -static FILE *yyTraceFILE = 0; -static char *yyTracePrompt = 0; - -/* -** Turn parser tracing on by giving a stream to which to write the trace -** and a prompt to preface each trace message. Tracing is turned off -** by making either argument NULL -** -** Inputs: -**
    -**
  • A FILE* to which trace output should be written. -** If NULL, then tracing is turned off. -**
  • A prefix string written at the beginning of every -** line of trace output. If NULL, then tracing is -** turned off. -**
-** -** Outputs: -** None. -*/ -void ParseTrace(FILE *TraceFILE, char *zTracePrompt){ - yyTraceFILE = TraceFILE; - yyTracePrompt = zTracePrompt; - if( yyTraceFILE==0 ) yyTracePrompt = 0; - else if( yyTracePrompt==0 ) yyTraceFILE = 0; -} - -/* For tracing shifts, the names of all terminals and nonterminals -** are required. The following table supplies these names */ -static char *yyTokenName[] = { -%% -}; -#define YYTRACE(X) if( yyTraceFILE ) fprintf(yyTraceFILE,"%sReduce [%s].\n",yyTracePrompt,X); -#else -#define YYTRACE(X) -#endif - -/* -** This function allocates a new parser. -** The only argument is a pointer to a function which works like -** malloc. -** -** Inputs: -** A pointer to the function used to allocate memory. -** -** Outputs: -** A pointer to a parser. This pointer is used in subsequent calls -** to Parse and ParseFree. -*/ -void *ParseAlloc(void *(*mallocProc)(size_t)){ - yyParser *pParser; - pParser = (yyParser*)(*mallocProc)( sizeof(yyParser) ); - if( pParser ){ - pParser->idx = -1; - } - return pParser; -} - -/* The following function deletes the value associated with a -** symbol. The symbol can be either a terminal or nonterminal. -** "yymajor" is the symbol code, and "yypminor" is a pointer to -** the value. -*/ -static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){ - switch( yymajor ){ - /* Here is inserted the actions which take place when a - ** terminal or non-terminal is destroyed. This can happen - ** when the symbol is popped from the stack during a - ** reduce or during error processing or when a parser is - ** being destroyed before it is finished parsing. - ** - ** Note: during a reduce, the only symbols destroyed are those - ** which appear on the RHS of the rule, but which are not used - ** inside the C code. - */ -%% - default: break; /* If no destructor action specified: do nothing */ - } -} - -/* -** Pop the parser's stack once. -** -** If there is a destructor routine associated with the token which -** is popped from the stack, then call it. -** -** Return the major token number for the symbol popped. -*/ -static int yy_pop_parser_stack(yyParser *pParser){ - YYCODETYPE yymajor; - - if( pParser->idx<0 ) return 0; -#ifndef NDEBUG - if( yyTraceFILE && pParser->idx>=0 ){ - fprintf(yyTraceFILE,"%sPopping %s\n", - yyTracePrompt, - yyTokenName[pParser->top->major]); - } -#endif - yymajor = pParser->top->major; - yy_destructor( yymajor, &pParser->top->minor); - pParser->idx--; - pParser->top--; - return yymajor; -} - -/* -** Deallocate and destroy a parser. Destructors are all called for -** all stack elements before shutting the parser down. -** -** Inputs: -**
    -**
  • A pointer to the parser. This should be a pointer -** obtained from ParseAlloc. -**
  • A pointer to a function used to reclaim memory obtained -** from malloc. -**
-*/ -void ParseFree( - void *p, /* The parser to be deleted */ - void (*freeProc)(void*) /* Function used to reclaim memory */ -){ - yyParser *pParser = (yyParser*)p; - if( pParser==0 ) return; - while( pParser->idx>=0 ) yy_pop_parser_stack(pParser); - (*freeProc)((void*)pParser); -} - -/* -** Find the appropriate action for a parser given the look-ahead token. -** -** If the look-ahead token is YYNOCODE, then check to see if the action is -** independent of the look-ahead. If it is, return the action, otherwise -** return YY_NO_ACTION. -*/ -static int yy_find_parser_action( - yyParser *pParser, /* The parser */ - int iLookAhead /* The look-ahead token */ -){ - struct yyStateEntry *pState; /* Appropriate entry in the state table */ - struct yyActionEntry *pAction; /* Action appropriate for the look-ahead */ - - /* if( pParser->idx<0 ) return YY_NO_ACTION; */ - pState = &yyStateTable[pParser->top->stateno]; - if( iLookAhead!=YYNOCODE ){ - pAction = &pState->hashtbl[iLookAhead & pState->mask]; - while( pAction ){ - if( pAction->lookahead==iLookAhead ) return pAction->action; - pAction = pAction->next; - } - }else if( pState->mask!=0 || pState->hashtbl->lookahead!=YYNOCODE ){ - return YY_NO_ACTION; - } - return pState->actionDefault; -} - -/* -** Perform a shift action. -*/ -static void yy_shift( - yyParser *yypParser, /* The parser to be shifted */ - int yyNewState, /* The new state to shift in */ - int yyMajor, /* The major token to shift in */ - YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */ -){ - yypParser->idx++; - yypParser->top++; - if( yypParser->idx>=YYSTACKDEPTH ){ - yypParser->idx--; - yypParser->top--; -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); - } -#endif - while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will execute if the parser - ** stack every overflows */ -%% - return; - } - yypParser->top->stateno = yyNewState; - yypParser->top->major = yyMajor; - yypParser->top->minor = *yypMinor; -#ifndef NDEBUG - if( yyTraceFILE && yypParser->idx>0 ){ - int i; - fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); - fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); - for(i=1; i<=yypParser->idx; i++) - fprintf(yyTraceFILE," %s",yyTokenName[yypParser->stack[i].major]); - fprintf(yyTraceFILE,"\n"); - } -#endif -} - -/* The following table contains information about every rule that -** is used during the reduce. -*/ -static struct { - YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ - unsigned char nrhs; /* Number of right-hand side symbols in the rule */ -} yyRuleInfo[] = { -%% -}; - -static void yy_accept(yyParser * ParseANSIARGDECL); /* Forward Declaration */ - -/* -** Perform a reduce action and the shift that must immediately -** follow the reduce. -*/ -static void yy_reduce( - yyParser *yypParser, /* The parser */ - int yyruleno /* Number of the rule by which to reduce */ - ParseANSIARGDECL -){ - int yygoto; /* The next state */ - int yyact; /* The next action */ - YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ - struct yyStackEntry *yymsp; /* The top of the parser's stack */ - int yysize; /* Amount to pop the stack */ - yymsp = yypParser->top; - switch( yyruleno ){ - /* Beginning here are the reduction cases. A typical example - ** follows: - ** case 0: - ** YYTRACE(""); - ** #line - ** { ... } // User supplied code - ** #line - ** break; - */ -%% - }; - yygoto = yyRuleInfo[yyruleno].lhs; - yysize = yyRuleInfo[yyruleno].nrhs; - yypParser->idx -= yysize; - yypParser->top -= yysize; - yyact = yy_find_parser_action(yypParser,yygoto); - if( yyact < YYNSTATE ){ - yy_shift(yypParser,yyact,yygoto,&yygotominor); - }else if( yyact == YYNSTATE + YYNRULE + 1 ){ - yy_accept(yypParser ParseARGDECL); - } -} - -/* -** The following code executes when the parse fails -*/ -static void yy_parse_failed( - yyParser *yypParser /* The parser */ - ParseANSIARGDECL /* Extra arguments (if any) */ -){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); - } -#endif - while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser fails */ -%% -} - -/* -** The following code executes when a syntax error first occurs. -*/ -static void yy_syntax_error( - yyParser *yypParser, /* The parser */ - int yymajor, /* The major type of the error token */ - YYMINORTYPE yyminor /* The minor type of the error token */ - ParseANSIARGDECL /* Extra arguments (if any) */ -){ -#define TOKEN (yyminor.yy0) -%% -} - -/* -** The following is executed when the parser accepts -*/ -static void yy_accept( - yyParser *yypParser /* The parser */ - ParseANSIARGDECL /* Extra arguments (if any) */ -){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); - } -#endif - while( yypParser->idx>=0 ) yy_pop_parser_stack(yypParser); - /* Here code is inserted which will be executed whenever the - ** parser accepts */ -%% -} - -/* The main parser program. -** The first argument is a pointer to a structure obtained from -** "ParseAlloc" which describes the current state of the parser. -** The second argument is the major token number. The third is -** the minor token. The fourth optional argument is whatever the -** user wants (and specified in the grammar) and is available for -** use by the action routines. -** -** Inputs: -**
    -**
  • A pointer to the parser (an opaque structure.) -**
  • The major token number. -**
  • The minor token number. -**
  • An option argument of a grammar-specified type. -**
-** -** Outputs: -** None. -*/ -void Parse( - void *yyp, /* The parser */ - int yymajor, /* The major token code number */ - ParseTOKENTYPE yyminor /* The value for the token */ - ParseANSIARGDECL -){ - YYMINORTYPE yyminorunion; - int yyact; /* The parser action. */ - int yyendofinput; /* True if we are at the end of input */ - int yyerrorhit = 0; /* True if yymajor has invoked an error */ - yyParser *yypParser; /* The parser */ - - /* (re)initialize the parser, if necessary */ - yypParser = (yyParser*)yyp; - if( yypParser->idx<0 ){ - if( yymajor==0 ) return; - yypParser->idx = 0; - yypParser->errcnt = -1; - yypParser->top = &yypParser->stack[0]; - yypParser->top->stateno = 0; - yypParser->top->major = 0; - } - yyminorunion.yy0 = yyminor; - yyendofinput = (yymajor==0); - -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); - } -#endif - - do{ - yyact = yy_find_parser_action(yypParser,yymajor); - if( yyacterrcnt--; - if( yyendofinput && yypParser->idx>=0 ){ - yymajor = 0; - }else{ - yymajor = YYNOCODE; - } - }else if( yyact < YYNSTATE + YYNRULE ){ - yy_reduce(yypParser,yyact-YYNSTATE ParseARGDECL); - }else if( yyact == YY_ERROR_ACTION ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); - } -#endif -#ifdef YYERRORSYMBOL - /* A syntax error has occurred. - ** The response to an error depends upon whether or not the - ** grammar defines an error token "ERROR". - ** - ** This is what we do if the grammar does define ERROR: - ** - ** * Call the %syntax_error function. - ** - ** * Begin popping the stack until we enter a state where - ** it is legal to shift the error symbol, then shift - ** the error symbol. - ** - ** * Set the error count to three. - ** - ** * Begin accepting and shifting new tokens. No new error - ** processing will occur until three tokens have been - ** shifted successfully. - ** - */ - if( yypParser->errcnt<0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion ParseARGDECL); - } - if( yypParser->top->major==YYERRORSYMBOL || yyerrorhit ){ -#ifndef NDEBUG - if( yyTraceFILE ){ - fprintf(yyTraceFILE,"%sDiscard input token %s\n", - yyTracePrompt,yyTokenName[yymajor]); - } -#endif - yy_destructor(yymajor,&yyminorunion); - yymajor = YYNOCODE; - }else{ - while( - yypParser->idx >= 0 && - yypParser->top->major != YYERRORSYMBOL && - (yyact = yy_find_parser_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE - ){ - yy_pop_parser_stack(yypParser); - } - if( yypParser->idx < 0 || yymajor==0 ){ - yy_destructor(yymajor,&yyminorunion); - yy_parse_failed(yypParser ParseARGDECL); - yymajor = YYNOCODE; - }else if( yypParser->top->major!=YYERRORSYMBOL ){ - YYMINORTYPE u2; - u2.YYERRSYMDT = 0; - yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); - } - } - yypParser->errcnt = 3; - yyerrorhit = 1; -#else /* YYERRORSYMBOL is not defined */ - /* This is what we do if the grammar does not define ERROR: - ** - ** * Report an error message, and throw away the input token. - ** - ** * If the input token is $, then fail the parse. - ** - ** As before, subsequent error messages are suppressed until - ** three input tokens have been successfully shifted. - */ - if( yypParser->errcnt<=0 ){ - yy_syntax_error(yypParser,yymajor,yyminorunion ParseARGDECL); - } - yypParser->errcnt = 3; - yy_destructor(yymajor,&yyminorunion); - if( yyendofinput ){ - yy_parse_failed(yypParser ParseARGDECL); - } - yymajor = YYNOCODE; -#endif - }else{ - yy_accept(yypParser ParseARGDECL); - yymajor = YYNOCODE; - } - }while( yymajor!=YYNOCODE && yypParser->idx>=0 ); - return; -}