Yasm Assembler mainline development tree (ffmpeg 依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1453 lines
37 KiB

/* $IdPath$
* Expression handling
*
* Copyright (C) 2001 Michael Urman, Peter Johnson
*
* This file is part of YASM.
*
* YASM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* YASM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "util.h"
#include <stdio.h>
#ifdef STDC_HEADERS
# include <stdlib.h>
# include <string.h>
#endif
#include <libintl.h>
#define _(String) gettext(String)
#ifdef gettext_noop
#define N_(String) gettext_noop(String)
#else
#define N_(String) (String)
#endif
#include "bitvect.h"
#include "globals.h"
#include "errwarn.h"
#include "intnum.h"
#include "floatnum.h"
#include "expr.h"
#include "symrec.h"
#ifdef DMALLOC
# include <dmalloc.h>
#endif
RCSID("$IdPath$");
/* Types listed in canonical sorting order. See expr_order_terms(). */
typedef enum {
EXPR_NONE = 0,
EXPR_REG = 1<<0,
EXPR_INT = 1<<1,
EXPR_FLOAT = 1<<2,
EXPR_SYM = 1<<3,
EXPR_EXPR = 1<<4
} ExprType;
struct ExprItem {
ExprType type;
union {
symrec *sym;
expr *expn;
intnum *intn;
floatnum *flt;
struct reg {
unsigned char num;
unsigned char size; /* in bits, eg AX=16, EAX=32 */
} reg;
} data;
};
/* Some operations may allow more than two operand terms:
* ADD, MUL, OR, AND, XOR
*/
struct expr {
ExprOp op;
char *filename;
unsigned long line;
int numterms;
ExprItem terms[2]; /* structure may be extended to include more */
};
static int expr_traverse_nodes_post(expr *e, void *d,
int (*func) (expr *e, void *d));
static int expr_traverse_leaves_in(expr *e, void *d,
int (*func) (ExprItem *ei, void *d));
/* allocate a new expression node, with children as defined.
* If it's a unary operator, put the element on the right */
expr *
expr_new(ExprOp op, ExprItem *left, ExprItem *right)
{
expr *ptr;
ptr = xmalloc(sizeof(expr));
ptr->op = op;
ptr->numterms = 0;
ptr->terms[0].type = EXPR_NONE;
ptr->terms[1].type = EXPR_NONE;
if (left) {
memcpy(&ptr->terms[0], left, sizeof(ExprItem));
free(left);
ptr->numterms++;
} else {
InternalError(__LINE__, __FILE__,
_("Right side of expression must exist"));
}
if (right) {
memcpy(&ptr->terms[1], right, sizeof(ExprItem));
free(right);
ptr->numterms++;
}
ptr->filename = xstrdup(in_filename);
ptr->line = line_number;
return ptr;
}
/* helpers */
ExprItem *
ExprSym(symrec *s)
{
ExprItem *e = xmalloc(sizeof(ExprItem));
e->type = EXPR_SYM;
e->data.sym = s;
return e;
}
ExprItem *
ExprExpr(expr *x)
{
ExprItem *e = xmalloc(sizeof(ExprItem));
e->type = EXPR_EXPR;
e->data.expn = x;
return e;
}
ExprItem *
ExprInt(intnum *i)
{
ExprItem *e = xmalloc(sizeof(ExprItem));
e->type = EXPR_INT;
e->data.intn = i;
return e;
}
ExprItem *
ExprFloat(floatnum *f)
{
ExprItem *e = xmalloc(sizeof(ExprItem));
e->type = EXPR_FLOAT;
e->data.flt = f;
return e;
}
ExprItem *
ExprReg(unsigned char reg, unsigned char size)
{
ExprItem *e = xmalloc(sizeof(ExprItem));
e->type = EXPR_REG;
e->data.reg.num = reg;
e->data.reg.size = size;
return e;
}
/* Negate just a single ExprItem by building a -1*ei subexpression */
static void
expr_xform_neg_item(expr *e, ExprItem *ei)
{
expr *sube = xmalloc(sizeof(expr));
/* Build -1*ei subexpression */
sube->op = EXPR_MUL;
sube->filename = xstrdup(e->filename);
sube->line = e->line;
sube->numterms = 2;
sube->terms[0].type = EXPR_INT;
sube->terms[0].data.intn = intnum_new_int(-1);
sube->terms[1] = *ei; /* structure copy */
/* Replace original ExprItem with subexp */
ei->type = EXPR_EXPR;
ei->data.expn = sube;
}
/* Negates e by multiplying by -1, with distribution over lower-precedence
* operators (eg ADD) and special handling to simplify result w/ADD, NEG, and
* others.
*
* Returns a possibly reallocated e.
*/
static expr *
expr_xform_neg_helper(expr *e)
{
expr *ne;
int i;
switch (e->op) {
case EXPR_ADD:
/* distribute (recursively if expr) over terms */
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_EXPR)
e->terms[i].data.expn =
expr_xform_neg_helper(e->terms[i].data.expn);
else
expr_xform_neg_item(e, &e->terms[i]);
}
break;
case EXPR_SUB:
/* change op to ADD, and recursively negate left side (if expr) */
e->op = EXPR_ADD;
if (e->terms[0].type == EXPR_EXPR)
e->terms[0].data.expn =
expr_xform_neg_helper(e->terms[0].data.expn);
else
expr_xform_neg_item(e, &e->terms[0]);
break;
case EXPR_NEG:
/* Negating a negated value? Make it an IDENT. */
e->op = EXPR_IDENT;
break;
case EXPR_IDENT:
/* Negating an ident? Change it into a MUL w/ -1. */
e->op = EXPR_MUL;
e->numterms = 2;
e->terms[1].type = EXPR_INT;
e->terms[1].data.intn = intnum_new_int(-1);
break;
default:
/* Everything else. MUL will be combined when it's leveled.
* Make a new expr (to replace e) with -1*e.
*/
ne = xmalloc(sizeof(expr));
ne->op = EXPR_MUL;
ne->filename = xstrdup(e->filename);
ne->line = e->line;
ne->numterms = 2;
ne->terms[0].type = EXPR_INT;
ne->terms[0].data.intn = intnum_new_int(-1);
ne->terms[1].type = EXPR_EXPR;
ne->terms[1].data.expn = e;
return ne;
}
return e;
}
/* Transforms negatives into expressions that are easier to combine:
* -x -> -1*x
* a-b -> a+(-1*b)
*
* Call post-order on an expression tree to transform the entire tree.
*
* Returns a possibly reallocated e.
*/
static expr *
expr_xform_neg(expr *e)
{
switch (e->op) {
case EXPR_NEG:
/* Turn -x into -1*x */
e->op = EXPR_IDENT;
return expr_xform_neg_helper(e);
case EXPR_SUB:
/* Turn a-b into a+(-1*b) */
/* change op to ADD, and recursively negate right side (if expr) */
e->op = EXPR_ADD;
if (e->terms[1].type == EXPR_EXPR)
e->terms[1].data.expn =
expr_xform_neg_helper(e->terms[1].data.expn);
else
expr_xform_neg_item(e, &e->terms[1]);
break;
default:
break;
}
return e;
}
/* Level an entire expn tree */
static expr *
expr_xform_neg_tree(expr *e)
{
int i;
if (!e)
return 0;
/* traverse terms */
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_EXPR)
e->terms[i].data.expn = expr_xform_neg_tree(e->terms[i].data.expn);
}
/* do callback */
return expr_xform_neg(e);
}
/* Look for simple identities that make the entire result constant:
* 0*&x, -1|x, etc.
*/
static int
expr_is_constant(ExprOp op, intnum *intn)
{
return ((intnum_is_zero(intn) && op == EXPR_MUL) ||
(intnum_is_zero(intn) && op == EXPR_AND) ||
(intnum_is_neg1(intn) && op == EXPR_OR));
}
/* Look for simple "left" identities like 0+x, 1*x, etc. */
static int
expr_can_delete_int_left(ExprOp op, intnum *intn)
{
return ((intnum_is_pos1(intn) && op == EXPR_MUL) ||
(intnum_is_zero(intn) && op == EXPR_ADD) ||
(intnum_is_neg1(intn) && op == EXPR_AND) ||
(intnum_is_zero(intn) && op == EXPR_OR));
}
/* Look for simple "right" identities like x+|-0, x*&/1 */
static int
expr_can_delete_int_right(ExprOp op, intnum *intn)
{
return ((intnum_is_pos1(intn) && op == EXPR_MUL) ||
(intnum_is_pos1(intn) && op == EXPR_DIV) ||
(intnum_is_zero(intn) && op == EXPR_ADD) ||
(intnum_is_zero(intn) && op == EXPR_SUB) ||
(intnum_is_neg1(intn) && op == EXPR_AND) ||
(intnum_is_zero(intn) && op == EXPR_OR) ||
(intnum_is_zero(intn) && op == EXPR_SHL) ||
(intnum_is_zero(intn) && op == EXPR_SHR));
}
/* Check for and simplify identities. Returns new number of expr terms.
* Sets e->op = EXPR_IDENT if numterms ends up being 1.
* Uses numterms parameter instead of e->numterms for basis of "new" number
* of terms.
* Assumes int_term is *only* integer term in e.
* NOTE: Really designed to only be used by expr_level_op().
*/
static int
expr_simplify_identity(expr *e, int numterms, int int_term)
{
int i;
/* Check for simple identities that delete the intnum.
* Don't delete if the intnum is the only thing in the expn.
*/
if ((int_term == 0 && numterms > 1 &&
expr_can_delete_int_left(e->op, e->terms[0].data.intn)) ||
(int_term > 0 &&
expr_can_delete_int_right(e->op, e->terms[int_term].data.intn))) {
/* Delete the intnum */
intnum_delete(e->terms[int_term].data.intn);
/* Slide everything to its right over by 1 */
if (int_term != numterms-1) /* if it wasn't last.. */
memmove(&e->terms[int_term], &e->terms[int_term+1],
(numterms-1-int_term)*sizeof(ExprItem));
/* Update numterms */
numterms--;
}
/* Check for simple identites that delete everything BUT the intnum.
* Don't bother if the intnum is the only thing in the expn.
*/
if (numterms > 1 &&
expr_is_constant(e->op, e->terms[int_term].data.intn)) {
/* Loop through, deleting everything but the integer term */
for (i=0; i<e->numterms; i++)
if (i != int_term)
switch (e->terms[i].type) {
case EXPR_INT:
intnum_delete(e->terms[i].data.intn);
break;
case EXPR_FLOAT:
floatnum_delete(e->terms[i].data.flt);
break;
case EXPR_EXPR:
expr_delete(e->terms[i].data.expn);
break;
default:
break;
}
/* Move integer term to the first term (if not already there) */
if (int_term != 0)
e->terms[0] = e->terms[int_term]; /* structure copy */
/* Set numterms to 1 */
numterms = 1;
}
/* Change expression to IDENT if possible. */
if (numterms == 1)
e->op = EXPR_IDENT;
/* Return the updated numterms */
return numterms;
}
/* Levels the expression tree starting at e. Eg:
* a+(b+c) -> a+b+c
* (a+b)+(c+d) -> a+b+c+d
* Naturally, only levels operators that allow more than two operand terms.
* NOTE: only does *one* level of leveling (no recursion). Should be called
* post-order on a tree to combine deeper levels.
* Also brings up any IDENT values into the current level (for ALL operators).
* Folds (combines by evaluation) *integer* constant values if fold_const != 0.
*
* Returns a possibly reallocated e.
*/
static expr *
expr_level_op(expr *e, int fold_const, int simplify_ident)
{
int i, j, o, fold_numterms, level_numterms, level_fold_numterms;
int first_int_term = -1;
/* Determine how many operands will need to be brought up (for leveling).
* Go ahead and bring up any IDENT'ed values.
*/
level_numterms = e->numterms;
level_fold_numterms = 0;
for (i=0; i<e->numterms; i++) {
/* Search downward until we find something *other* than an
* IDENT, then bring it up to the current level.
*/
while (e->terms[i].type == EXPR_EXPR &&
e->terms[i].data.expn->op == EXPR_IDENT) {
expr *sube = e->terms[i].data.expn;
e->terms[i] = sube->terms[0];
free(sube->filename);
free(sube);
}
if (e->terms[i].type == EXPR_EXPR &&
e->terms[i].data.expn->op == e->op) {
/* It's an expression w/the same operator, add in its numterms.
* But don't forget to subtract one for the expr itself!
*/
level_numterms += e->terms[i].data.expn->numterms - 1;
/* If we're folding constants, count up the number of constants
* that will be merged in.
*/
if (fold_const)
for (j=0; j<e->terms[i].data.expn->numterms; j++)
if (e->terms[i].data.expn->terms[j].type == EXPR_INT)
level_fold_numterms++;
}
/* Find the first integer term (if one is present) if we're folding
* constants.
*/
if (fold_const && first_int_term == -1 && e->terms[i].type == EXPR_INT)
first_int_term = i;
}
/* Look for other integer terms if there's one and combine.
* Also eliminate empty spaces when combining and adjust numterms
* variables.
*/
fold_numterms = e->numterms;
if (first_int_term != -1) {
for (i=first_int_term+1, o=first_int_term+1; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_INT) {
intnum_calc(e->terms[first_int_term].data.intn, e->op,
e->terms[i].data.intn);
fold_numterms--;
level_numterms--;
/* make sure to delete folded intnum */
intnum_delete(e->terms[i].data.intn);
} else if (o != i) {
/* copy term if it changed places */
e->terms[o++] = e->terms[i];
}
}
if (simplify_ident)
/* Simplify identities and make IDENT if possible. */
fold_numterms = expr_simplify_identity(e, fold_numterms,
first_int_term);
else if (fold_numterms == 1)
e->op = EXPR_IDENT;
}
/* Only level operators that allow more than two operand terms.
* Also don't bother leveling if it's not necessary to bring up any terms.
*/
if ((e->op != EXPR_ADD && e->op != EXPR_MUL && e->op != EXPR_OR &&
e->op != EXPR_AND && e->op != EXPR_XOR) ||
level_numterms <= fold_numterms) {
/* Downsize e if necessary */
if (fold_numterms < e->numterms && e->numterms > 2)
e = xrealloc(e, sizeof(expr)+((fold_numterms<2) ? 0 :
sizeof(ExprItem)*(fold_numterms-2)));
/* Update numterms */
e->numterms = fold_numterms;
return e;
}
/* Adjust numterms for constant folding from terms being "pulled up".
* Careful: if there's no integer term in e, then save space for it.
*/
if (fold_const) {
level_numterms -= level_fold_numterms;
if (first_int_term == -1 && level_fold_numterms != 0)
level_numterms++;
}
/* Alloc more (or conceivably less, but not usually) space for e */
e = xrealloc(e, sizeof(expr)+((level_numterms<2) ? 0 :
sizeof(ExprItem)*(level_numterms-2)));
/* Copy up ExprItem's. Iterate from right to left to keep the same
* ordering as was present originally.
* Combine integer terms as necessary.
*/
for (i=e->numterms-1, o=level_numterms-1; i>=0; i--) {
if (e->terms[i].type == EXPR_EXPR &&
e->terms[i].data.expn->op == e->op) {
/* bring up subexpression */
expr *sube = e->terms[i].data.expn;
/* copy terms right to left */
for (j=sube->numterms-1; j>=0; j--) {
if (fold_const && sube->terms[j].type == EXPR_INT) {
/* Need to fold it in.. but if there's no int term already,
* just copy into a new one.
*/
if (first_int_term == -1) {
first_int_term = o--;
e->terms[first_int_term] = sube->terms[j]; /* struc */
} else {
intnum_calc(e->terms[first_int_term].data.intn, e->op,
sube->terms[j].data.intn);
/* make sure to delete folded intnum */
intnum_delete(sube->terms[j].data.intn);
}
} else {
e->terms[o--] = sube->terms[j]; /* structure copy */
}
}
/* delete subexpression, but *don't delete nodes* (as we've just
* copied them!)
*/
free(sube->filename);
free(sube);
} else if (o != i) {
/* copy operand if it changed places */
e->terms[o--] = e->terms[i];
}
}
/* Simplify identities, make IDENT if possible, and save to e->numterms. */
if (simplify_ident && first_int_term != -1) {
e->numterms = expr_simplify_identity(e, level_numterms,
first_int_term);
} else {
e->numterms = level_numterms;
if (level_numterms == 1)
e->op = EXPR_IDENT;
}
return e;
}
/* Level an entire expn tree */
static expr *
expr_level_tree(expr *e, int fold_const, int simplify_ident)
{
int i;
if (!e)
return 0;
/* traverse terms */
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_EXPR)
e->terms[i].data.expn = expr_level_tree(e->terms[i].data.expn,
fold_const,
simplify_ident);
}
/* do callback */
return expr_level_op(e, fold_const, simplify_ident);
}
/* Comparison function for expr_order_terms().
* Assumes ExprType enum is in canonical order.
*/
static int
expr_order_terms_compare(const void *va, const void *vb)
{
const ExprItem *a = va, *b = vb;
return (a->type - b->type);
}
/* Reorder terms of e into canonical order. Only reorders if reordering
* doesn't change meaning of expression. (eg, doesn't reorder SUB).
* Canonical order: REG, INT, FLOAT, SYM, EXPR.
* Multiple terms of a single type are kept in the same order as in
* the original expression.
* NOTE: Only performs reordering on *one* level (no recursion).
*/
static void
expr_order_terms(expr *e)
{
/* don't bother reordering if only one element */
if (e->numterms == 1)
return;
/* only reorder some types of operations */
switch (e->op) {
case EXPR_ADD:
case EXPR_MUL:
case EXPR_OR:
case EXPR_AND:
case EXPR_XOR:
/* Use mergesort to sort. It's fast on already sorted values and a
* stable sort (multiple terms of same type are kept in the same
* order).
*/
mergesort(e->terms, e->numterms, sizeof(ExprItem),
expr_order_terms_compare);
break;
default:
break;
}
}
/* Copy entire expression EXCEPT for index "except" at *top level only*. */
static expr *
expr_copy_except(const expr *e, int except)
{
expr *n;
int i;
if (!e)
return 0;
n = xmalloc(sizeof(expr)+sizeof(ExprItem)*(e->numterms-2));
n->op = e->op;
n->filename = xstrdup(e->filename);
n->line = e->line;
n->numterms = e->numterms;
for (i=0; i<e->numterms; i++) {
ExprItem *dest = &n->terms[i];
const ExprItem *src = &e->terms[i];
if (i != except) {
dest->type = src->type;
switch (src->type) {
case EXPR_SYM:
dest->data.sym = src->data.sym;
break;
case EXPR_EXPR:
dest->data.expn = expr_copy_except(src->data.expn, -1);
break;
case EXPR_INT:
dest->data.intn = intnum_copy(src->data.intn);
break;
case EXPR_FLOAT:
dest->data.flt = floatnum_copy(src->data.flt);
break;
case EXPR_REG:
dest->data.reg.num = src->data.reg.num;
dest->data.reg.size = src->data.reg.size;
break;
default:
break;
}
}
}
return n;
}
expr *
expr_copy(const expr *e)
{
return expr_copy_except(e, -1);
}
static int
expr_delete_each(expr *e, void *d)
{
int i;
for (i=0; i<e->numterms; i++) {
switch (e->terms[i].type) {
case EXPR_INT:
intnum_delete(e->terms[i].data.intn);
break;
case EXPR_FLOAT:
floatnum_delete(e->terms[i].data.flt);
break;
default:
break; /* none of the other types needs to be deleted */
}
}
free(e->filename);
free(e); /* free ourselves */
return 0; /* don't stop recursion */
}
void
expr_delete(expr *e)
{
expr_traverse_nodes_post(e, NULL, expr_delete_each);
}
static int
expr_contains_callback(ExprItem *ei, void *d)
{
ExprType *t = d;
return (ei->type & *t);
}
static int
expr_contains(expr *e, ExprType t)
{
return expr_traverse_leaves_in(e, &t, expr_contains_callback);
}
/* Only works if ei->type == EXPR_REG (doesn't check).
* Overwrites ei with intnum of 0 (to eliminate regs from the final expr).
*/
static int *
expr_checkea_get_reg32(ExprItem *ei, void *d)
{
int *data = d;
int *ret;
/* don't allow 16-bit registers */
if (ei->data.reg.size != 32)
return 0;
ret = &data[ei->data.reg.num & 7]; /* & 7 for sanity check */
/* overwrite with 0 to eliminate register from displacement expr */
ei->type = EXPR_INT;
ei->data.intn = intnum_new_int(0);
/* we're okay */
return ret;
}
typedef struct checkea_invalid16_data {
int bx, si, di, bp; /* total multiplier for each reg */
} checkea_invalid16_data;
/* Only works if ei->type == EXPR_REG (doesn't check).
* Overwrites ei with intnum of 0 (to eliminate regs from the final expr).
*/
static int *
expr_checkea_get_reg16(ExprItem *ei, void *d)
{
checkea_invalid16_data *data = d;
/* in order: ax,cx,dx,bx,sp,bp,si,di */
static int *reg16[8] = {0,0,0,0,0,0,0,0};
int *ret;
reg16[3] = &data->bx;
reg16[5] = &data->bp;
reg16[6] = &data->si;
reg16[7] = &data->di;
/* don't allow 32-bit registers */
if (ei->data.reg.size != 16)
return 0;
ret = reg16[ei->data.reg.num & 7]; /* & 7 for sanity check */
/* only allow BX, SI, DI, BP */
if (!ret)
return 0;
/* overwrite with 0 to eliminate register from displacement expr */
ei->type = EXPR_INT;
ei->data.intn = intnum_new_int(0);
/* we're okay */
return ret;
}
/* Distribute over registers to help bring them to the topmost level of e.
* Also check for illegal operations against registers.
* Returns 0 if something was illegal, 1 if legal and nothing in e changed,
* and 2 if legal and e needs to be simplified.
*
* Only half joking: Someday make this/checkea able to accept crazy things
* like: (bx+di)*(bx+di)-bx*bx-2*bx*di-di*di+di? Probably not: NASM never
* accepted such things, and it's doubtful such an expn is valid anyway
* (even though the above one is). But even macros would be hard-pressed
* to generate something like this.
*
* e must already have been simplified for this function to work properly
* (as it doesn't think things like SUB are valid).
*
* IMPLEMENTATION NOTE: About the only thing this function really needs to
* "distribute" is: (non-float-expn or intnum) * (sum expn of registers).
*
* TODO: Clean up this code, make it easier to understand.
*/
static int
expr_checkea_distcheck_reg(expr **ep)
{
expr *e = *ep;
int i;
int havereg = -1, havereg_expr = -1;
int retval = 1; /* default to legal, no changes */
for (i=0; i<e->numterms; i++) {
switch (e->terms[i].type) {
case EXPR_REG:
/* Check op to make sure it's valid to use w/register. */
if (e->op != EXPR_ADD && e->op != EXPR_MUL &&
e->op != EXPR_IDENT)
return 0;
/* Check for reg*reg */
if (e->op == EXPR_MUL && havereg != -1)
return 0;
havereg = i;
break;
case EXPR_FLOAT:
/* Floats not allowed. */
return 0;
case EXPR_EXPR:
if (expr_contains(e->terms[i].data.expn, EXPR_REG)) {
int ret2;
/* Check op to make sure it's valid to use w/register. */
if (e->op != EXPR_ADD && e->op != EXPR_MUL)
return 0;
/* Check for reg*reg */
if (e->op == EXPR_MUL && havereg != -1)
return 0;
havereg = i;
havereg_expr = i;
/* Recurse to check lower levels */
ret2 = expr_checkea_distcheck_reg(&e->terms[i].data.expn);
if (ret2 == 0)
return 0;
if (ret2 == 2)
retval = 2;
} else if (expr_contains(e->terms[i].data.expn, EXPR_FLOAT))
return 0; /* Disallow floats */
break;
default:
break;
}
}
/* just exit if no registers were used */
if (havereg == -1)
return retval;
/* Distribute */
if (e->op == EXPR_MUL && havereg_expr != -1) {
expr *ne;
retval = 2; /* we're going to change it */
/* The reg expn *must* be EXPR_ADD at this point. Sanity check. */
if (e->terms[havereg_expr].type != EXPR_EXPR ||
e->terms[havereg_expr].data.expn->op != EXPR_ADD)
InternalError(__LINE__, __FILE__,
_("Register expression not ADD or EXPN"));
/* Iterate over each term in reg expn */
for (i=0; i<e->terms[havereg_expr].data.expn->numterms; i++) {
/* Copy everything EXCEPT havereg_expr term into new expression */
ne = expr_copy_except(e, havereg_expr);
/* Copy reg expr term into uncopied (empty) term in new expn */
ne->terms[havereg_expr] =
e->terms[havereg_expr].data.expn->terms[i]; /* struct copy */
/* Overwrite old reg expr term with new expn */
e->terms[havereg_expr].data.expn->terms[i].type = EXPR_EXPR;
e->terms[havereg_expr].data.expn->terms[i].data.expn = ne;
}
/* Replace e with expanded reg expn */
ne = e->terms[havereg_expr].data.expn;
e->terms[havereg_expr].type = EXPR_NONE; /* don't delete it! */
expr_delete(e); /* but everything else */
e = ne;
*ep = ne;
}
return retval;
}
/* Simplify and determine if expression is superficially valid:
* Valid expr should be [(int-equiv expn)]+[reg*(int-equiv expn)+...]
* where the [...] parts are optional.
*
* Don't simplify out constant identities if we're looking for an indexreg: we
* need the multiplier for determining what the indexreg is!
*
* Returns 0 if invalid register usage, 1 if unable to determine all values,
* and 2 if all values successfully determined and saved in data.
*/
static int
expr_checkea_getregusage(expr **ep, int *indexreg, void *data,
int *(*get_reg)(ExprItem *ei, void *d))
{
int i;
int *reg;
expr *e;
*ep = expr_xform_neg_tree(*ep);
*ep = expr_level_tree(*ep, 1, indexreg == 0);
e = *ep;
switch (expr_checkea_distcheck_reg(ep)) {
case 0:
ErrorAt(e->filename, e->line, _("invalid effective address"));
return 0;
case 2:
/* Need to simplify again */
*ep = expr_xform_neg_tree(*ep);
*ep = expr_level_tree(*ep, 1, indexreg == 0);
e = *ep;
break;
default:
break;
}
switch (e->op) {
case EXPR_ADD:
/* Prescan for non-int multipliers.
* This is because if any of the terms is a more complex
* expr (eg, undetermined value), we don't want to try to
* figure out *any* of the expression, because each register
* lookup overwrites the register with a 0 value! And storing
* the state of this routine from one excution to the next
* would be a major chore.
*/
for (i=0; i<e->numterms; i++)
if (e->terms[i].type == EXPR_EXPR) {
if (e->terms[i].data.expn->numterms > 2)
return 1;
expr_order_terms(e->terms[i].data.expn);
if (e->terms[i].data.expn->terms[1].type != EXPR_INT)
return 1;
}
/* FALLTHROUGH */
case EXPR_IDENT:
/* Check each term for register (and possible multiplier). */
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_REG) {
reg = get_reg(&e->terms[i], data);
if (!reg)
return 0;
(*reg)++;
} else if (e->terms[i].type == EXPR_EXPR) {
/* Already ordered from ADD above, just grab the value.
* Sanity check for EXPR_INT.
*/
if (e->terms[i].data.expn->terms[0].type != EXPR_REG)
InternalError(__LINE__, __FILE__,
_("Register not found in reg expn"));
if (e->terms[i].data.expn->terms[1].type != EXPR_INT)
InternalError(__LINE__, __FILE__,
_("Non-integer value in reg expn"));
reg = get_reg(&e->terms[i].data.expn->terms[0], data);
if (!reg)
return 0;
(*reg) +=
intnum_get_int(e->terms[i].data.expn->terms[1].data.intn);
if (indexreg)
*indexreg =
e->terms[i].data.expn->terms[0].data.reg.num;
}
}
break;
case EXPR_MUL:
/* Here, too, check for non-int multipliers. */
if (e->numterms > 2)
return 1;
expr_order_terms(e);
if (e->terms[1].type != EXPR_INT)
return 1;
reg = get_reg(&e->terms[0], data);
if (!reg)
return 0;
(*reg) += intnum_get_int(e->terms[1].data.intn);
break;
default:
/* Should never get here! */
break;
}
/* Simplify expr, which is now really just the displacement. This
* should get rid of the 0's we put in for registers in the callback.
*/
*ep = expr_simplify(*ep);
/* e = *ep; */
return 2;
}
static int
expr_checkea_getregsize_callback(ExprItem *ei, void *d)
{
unsigned char *addrsize = (unsigned char *)d;
if (ei->type == EXPR_REG) {
*addrsize = ei->data.reg.size;
return 1;
} else
return 0;
}
int
expr_checkea(expr **ep, unsigned char *addrsize, unsigned char bits,
unsigned char nosplit, unsigned char *displen,
unsigned char *modrm, unsigned char *v_modrm,
unsigned char *n_modrm, unsigned char *sib, unsigned char *v_sib,
unsigned char *n_sib)
{
expr *e = *ep;
const intnum *intn;
long dispval;
if (*addrsize == 0) {
/* we need to figure out the address size from what we know about:
* - the displacement length
* - what registers are used in the expression
* - the bits setting
*/
switch (*displen) {
case 4:
/* must be 32-bit */
*addrsize = 32;
break;
case 2:
/* must be 16-bit */
*addrsize = 16;
break;
default:
/* check for use of 16 or 32-bit registers; if none are used
* default to bits setting.
*/
if (!expr_traverse_leaves_in(e, addrsize,
expr_checkea_getregsize_callback))
*addrsize = bits;
/* TODO: Add optional warning here if switched address size
* from bits setting just by register use.. eg [ax] in
* 32-bit mode would generate a warning.
*/
}
}
if (*addrsize == 32 && ((*n_modrm && !*v_modrm) || (*n_sib && !*v_sib))) {
int reg32mult[8] = {0, 0, 0, 0, 0, 0, 0, 0};
/*int basereg = 0;*/ /* "base" register (for SIB) */
int indexreg = 0; /* "index" register (for SIB) */
switch (expr_checkea_getregusage(ep, &indexreg, reg32mult,
expr_checkea_get_reg32)) {
case 0:
e = *ep;
ErrorAt(e->filename, e->line, _("invalid effective address"));
return 0;
case 1:
return 1;
default:
e = *ep;
break;
}
} else if (*addrsize == 16 && *n_modrm && !*v_modrm) {
static const unsigned char modrm16[16] = {
0006 /* disp16 */, 0007 /* [BX] */, 0004 /* [SI] */,
0000 /* [BX+SI] */, 0005 /* [DI] */, 0001 /* [BX+DI] */,
0377 /* invalid */, 0377 /* invalid */, 0006 /* [BP]+d */,
0377 /* invalid */, 0002 /* [BP+SI] */, 0377 /* invalid */,
0003 /* [BP+DI] */, 0377 /* invalid */, 0377 /* invalid */,
0377 /* invalid */
};
checkea_invalid16_data reg16mult = {0, 0, 0, 0};
enum {
HAVE_NONE = 0,
HAVE_BX = 1<<0,
HAVE_SI = 1<<1,
HAVE_DI = 1<<2,
HAVE_BP = 1<<3
} havereg = HAVE_NONE;
/* 16-bit cannot have SIB */
*sib = 0;
*v_sib = 0;
*n_sib = 0;
switch (expr_checkea_getregusage(ep, (int *)NULL, &reg16mult,
expr_checkea_get_reg16)) {
case 0:
e = *ep;
ErrorAt(e->filename, e->line, _("invalid effective address"));
return 0;
case 1:
return 1;
default:
e = *ep;
break;
}
/* reg multipliers not 0 or 1 are illegal. */
if (reg16mult.bx & ~1 || reg16mult.si & ~1 || reg16mult.di & ~1 ||
reg16mult.bp & ~1) {
ErrorAt(e->filename, e->line, _("invalid effective address"));
return 0;
}
/* Set havereg appropriately */
if (reg16mult.bx > 0)
havereg |= HAVE_BX;
if (reg16mult.si > 0)
havereg |= HAVE_SI;
if (reg16mult.di > 0)
havereg |= HAVE_DI;
if (reg16mult.bp > 0)
havereg |= HAVE_BP;
/* Check the modrm value for invalid combinations. */
if (modrm16[havereg] & 0070) {
ErrorAt(e->filename, e->line, _("invalid effective address"));
return 0;
}
*modrm |= modrm16[havereg];
*v_modrm = 0; /* default to not yet valid */
switch (*displen) {
case 0:
/* the displacement length hasn't been forced, try to
* determine what it is.
*/
switch (havereg) {
case HAVE_NONE:
/* no register in expression, so it must be disp16, and
* as the Mod bits are set to 0 above, we're done with
* the ModRM byte.
*/
*displen = 2;
*v_modrm = 1;
break;
case HAVE_BP:
/* for BP, there *must* be a displacement value, but we
* may not know the size (8 or 16) for sure right now.
* We can't leave displen at 0, because that just means
* unknown displacement, including none.
*/
*displen = 0xff;
break;
default:
break;
}
intn = expr_get_intnum(ep);
if (!intn)
break; /* expr still has unknown values */
/* make sure the displacement will fit in 16 bits if unsigned,
* and 8 bits if signed.
*/
if (!intnum_check_size(intn, 2, 0) &&
!intnum_check_size(intn, 1, 1)) {
ErrorAt(e->filename, e->line,
_("invalid effective address"));
return 0;
}
/* don't try to find out what size displacement we have if
* displen is known.
*/
if (*displen != 0 && *displen != 0xff)
break;
/* Don't worry about overflows here (it's already guaranteed
* to be 16 or 8 bits).
*/
dispval = intnum_get_int(intn);
/* Figure out what size displacement we will have. */
if (*displen != 0xff && dispval == 0) {
/* if we know that the displacement is 0 right now,
* go ahead and delete the expr (making it so no
* displacement value is included in the output).
* The Mod bits of ModRM are set to 0 above, and
* we're done with the ModRM byte!
*
* Don't do this if we came from HAVE_BP above, so
* check *displen.
*/
expr_delete(e);
*ep = (expr *)NULL;
} else if (dispval >= -128 && dispval <= 127) {
/* It fits into a signed byte */
*displen = 1;
*modrm |= 0100;
} else {
/* It's a 16-bit displacement */
*displen = 2;
*modrm |= 0200;
}
*v_modrm = 1; /* We're done with ModRM */
break;
/* If not 0, the displacement length was forced; set the Mod bits
* appropriately and we're done with the ModRM byte. We assume
* that the user knows what they're doing if they do an explicit
* override, so we don't check for overflow (we'll just truncate
* when we output).
*/
case 1:
*modrm |= 0100;
*v_modrm = 1;
break;
case 2:
*modrm |= 0200;
*v_modrm = 1;
break;
default:
/* any other size is an error */
ErrorAt(e->filename, e->line,
_("invalid effective address (displacement size)"));
return 0;
}
}
return 1;
}
static int
expr_expand_equ_callback(ExprItem *ei, void *d)
{
const expr *equ_expr;
if (ei->type == EXPR_SYM) {
equ_expr = symrec_get_equ(ei->data.sym);
if (equ_expr) {
ei->type = EXPR_EXPR;
ei->data.expn = expr_copy(equ_expr);
}
}
return 0;
}
void
expr_expand_equ(expr *e)
{
expr_traverse_leaves_in(e, NULL, expr_expand_equ_callback);
}
/* Traverse over expression tree, calling func for each operation AFTER the
* branches (if expressions) have been traversed (eg, postorder
* traversal). The data pointer d is passed to each func call.
*
* Stops early (and returns 1) if func returns 1. Otherwise returns 0.
*/
static int
expr_traverse_nodes_post(expr *e, void *d, int (*func) (expr *e, void *d))
{
int i;
if (!e)
return 0;
/* traverse terms */
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_EXPR &&
expr_traverse_nodes_post(e->terms[i].data.expn, d, func))
return 1;
}
/* do callback */
return func(e, d);
}
/* Traverse over expression tree in order, calling func for each leaf
* (non-operation). The data pointer d is passed to each func call.
*
* Stops early (and returns 1) if func returns 1. Otherwise returns 0.
*/
static int
expr_traverse_leaves_in(expr *e, void *d,
int (*func) (ExprItem *ei, void *d))
{
int i;
if (!e)
return 0;
for (i=0; i<e->numterms; i++) {
if (e->terms[i].type == EXPR_EXPR) {
if (expr_traverse_leaves_in(e->terms[i].data.expn, d, func))
return 1;
} else {
if (func(&e->terms[i], d))
return 1;
}
}
return 0;
}
/* Simplify expression by getting rid of unnecessary branches. */
expr *
expr_simplify(expr *e)
{
e = expr_xform_neg_tree(e);
e = expr_level_tree(e, 1, 1);
return e;
}
const intnum *
expr_get_intnum(expr **ep)
{
*ep = expr_simplify(*ep);
if ((*ep)->op == EXPR_IDENT && (*ep)->terms[0].type == EXPR_INT)
return (*ep)->terms[0].data.intn;
else
return (intnum *)NULL;
}
void
expr_print(expr *e)
{
static const char *regs[] = {"ax","cx","dx","bx","sp","bp","si","di"};
char opstr[3];
int i;
switch (e->op) {
case EXPR_ADD:
strcpy(opstr, "+");
break;
case EXPR_SUB:
strcpy(opstr, "-");
break;
case EXPR_MUL:
strcpy(opstr, "*");
break;
case EXPR_DIV:
strcpy(opstr, "/");
break;
case EXPR_SIGNDIV:
strcpy(opstr, "//");
break;
case EXPR_MOD:
strcpy(opstr, "%");
break;
case EXPR_SIGNMOD:
strcpy(opstr, "%%");
break;
case EXPR_NEG:
strcpy(opstr, "-");
break;
case EXPR_NOT:
strcpy(opstr, "~");
break;
case EXPR_OR:
strcpy(opstr, "|");
break;
case EXPR_AND:
strcpy(opstr, "&");
break;
case EXPR_XOR:
strcpy(opstr, "^");
break;
case EXPR_SHL:
strcpy(opstr, "<<");
break;
case EXPR_SHR:
strcpy(opstr, ">>");
break;
case EXPR_LOR:
strcpy(opstr, "||");
break;
case EXPR_LAND:
strcpy(opstr, "&&");
break;
case EXPR_LNOT:
strcpy(opstr, "!");
break;
case EXPR_LT:
strcpy(opstr, "<");
break;
case EXPR_GT:
strcpy(opstr, ">");
break;
case EXPR_LE:
strcpy(opstr, "<=");
break;
case EXPR_GE:
strcpy(opstr, ">=");
break;
case EXPR_NE:
strcpy(opstr, "!=");
break;
case EXPR_EQ:
strcpy(opstr, "==");
break;
case EXPR_IDENT:
opstr[0] = 0;
break;
}
for (i=0; i<e->numterms; i++) {
switch (e->terms[i].type) {
case EXPR_SYM:
printf("%s", symrec_get_name(e->terms[i].data.sym));
break;
case EXPR_EXPR:
printf("(");
expr_print(e->terms[i].data.expn);
printf(")");
break;
case EXPR_INT:
intnum_print(e->terms[i].data.intn);
break;
case EXPR_FLOAT:
floatnum_print(e->terms[i].data.flt);
break;
case EXPR_REG:
if (e->terms[i].data.reg.size == 32)
printf("e");
printf("%s", regs[e->terms[i].data.reg.num&7]);
break;
case EXPR_NONE:
break;
}
if (i < e->numterms-1)
printf("%s", opstr);
}
}