Yasm Assembler mainline development tree (ffmpeg 依赖)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

216 lines
5.6 KiB

/*
* Architecture interface
*
* Copyright (C) 2001 Peter Johnson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define YASM_LIB_INTERNAL
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
#define YASM_ARCH_INTERNAL
#include "util.h"
/*@unused@*/ RCSID("$Id$");
#include "coretype.h"
#include "expr.h"
#include "bytecode.h"
#include "arch.h"
yasm_insn_operand *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_create_reg(unsigned long reg)
{
yasm_insn_operand *retval = yasm_xmalloc(sizeof(yasm_insn_operand));
retval->type = YASM_INSN__OPERAND_REG;
retval->data.reg = reg;
retval->targetmod = 0;
retval->size = 0;
Preliminary GAS parser. Only a few instructions are supported at present. This work is being done under contract with a company that has requested to remain unnamed at the present time. * bc-int.h (yasm_effaddr): Add strong flag to indicate if the effective address is definitely an effective address; GAS does not use [] to designate effective addresses so it's otherwise impossible to tell the difference between "expr(,1)" and just "expr" (important for the relative jump instructions). * bytecode.h (yasm_ea_set_strong): New function to set the strong flag. * bytecode.c (yasm_ea_set_strong): Implementation. * x86bc.c (yasm_x86__ea_create_reg): Initialize strong flag. * arch.h (yasm_insn_operand): Add deref flag to indicate use of "*foo" in GAS syntax. * arch.c (yasm_operand_create_reg, yasm_operand_create_segreg) (yasm_operand_create_mem, yasm_operand_create_imm): Set deref flag to 0. * gas: GAS syntax lexer and parser. Not all directives are implemented yet (some will require additional core bytecodes). * elf-objfmt.c (elf_objfmt_section_switch): Add support for GAS-style section flags. * x86arch.h (yasm_arch_x86): Add parser setting. * x86arch.c (x86_create): Check for gas parser and initialize setting. * x86bc.c (yasm_x86__ea_create_expr): Transform val+RIP to val wrt RIP when using the GAS parser (this is how GAS interprets "expr(%rip)"). * x86id.re: Too many changes to enumerate in detail. Add new modifiers for GAS suffixes. Start using them in a couple instructions. Split check_id into subfunctions (still one entry point at present). (yasm_x86__finalize_insn): Support new modifiers, reverse operands, derefs. * yasm.c (main): Change all undef to extern when using GAS parser (this is default GAS behavior). svn path=/trunk/yasm/; revision=1239
19 years ago
retval->deref = 0;
retval->strict = 0;
return retval;
}
yasm_insn_operand *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_create_segreg(unsigned long segreg)
{
yasm_insn_operand *retval = yasm_xmalloc(sizeof(yasm_insn_operand));
retval->type = YASM_INSN__OPERAND_SEGREG;
retval->data.reg = segreg;
retval->targetmod = 0;
retval->size = 0;
Preliminary GAS parser. Only a few instructions are supported at present. This work is being done under contract with a company that has requested to remain unnamed at the present time. * bc-int.h (yasm_effaddr): Add strong flag to indicate if the effective address is definitely an effective address; GAS does not use [] to designate effective addresses so it's otherwise impossible to tell the difference between "expr(,1)" and just "expr" (important for the relative jump instructions). * bytecode.h (yasm_ea_set_strong): New function to set the strong flag. * bytecode.c (yasm_ea_set_strong): Implementation. * x86bc.c (yasm_x86__ea_create_reg): Initialize strong flag. * arch.h (yasm_insn_operand): Add deref flag to indicate use of "*foo" in GAS syntax. * arch.c (yasm_operand_create_reg, yasm_operand_create_segreg) (yasm_operand_create_mem, yasm_operand_create_imm): Set deref flag to 0. * gas: GAS syntax lexer and parser. Not all directives are implemented yet (some will require additional core bytecodes). * elf-objfmt.c (elf_objfmt_section_switch): Add support for GAS-style section flags. * x86arch.h (yasm_arch_x86): Add parser setting. * x86arch.c (x86_create): Check for gas parser and initialize setting. * x86bc.c (yasm_x86__ea_create_expr): Transform val+RIP to val wrt RIP when using the GAS parser (this is how GAS interprets "expr(%rip)"). * x86id.re: Too many changes to enumerate in detail. Add new modifiers for GAS suffixes. Start using them in a couple instructions. Split check_id into subfunctions (still one entry point at present). (yasm_x86__finalize_insn): Support new modifiers, reverse operands, derefs. * yasm.c (main): Change all undef to extern when using GAS parser (this is default GAS behavior). svn path=/trunk/yasm/; revision=1239
19 years ago
retval->deref = 0;
retval->strict = 0;
return retval;
}
yasm_insn_operand *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_create_mem(/*@only@*/ yasm_effaddr *ea)
{
yasm_insn_operand *retval = yasm_xmalloc(sizeof(yasm_insn_operand));
retval->type = YASM_INSN__OPERAND_MEMORY;
retval->data.ea = ea;
retval->targetmod = 0;
retval->size = 0;
Preliminary GAS parser. Only a few instructions are supported at present. This work is being done under contract with a company that has requested to remain unnamed at the present time. * bc-int.h (yasm_effaddr): Add strong flag to indicate if the effective address is definitely an effective address; GAS does not use [] to designate effective addresses so it's otherwise impossible to tell the difference between "expr(,1)" and just "expr" (important for the relative jump instructions). * bytecode.h (yasm_ea_set_strong): New function to set the strong flag. * bytecode.c (yasm_ea_set_strong): Implementation. * x86bc.c (yasm_x86__ea_create_reg): Initialize strong flag. * arch.h (yasm_insn_operand): Add deref flag to indicate use of "*foo" in GAS syntax. * arch.c (yasm_operand_create_reg, yasm_operand_create_segreg) (yasm_operand_create_mem, yasm_operand_create_imm): Set deref flag to 0. * gas: GAS syntax lexer and parser. Not all directives are implemented yet (some will require additional core bytecodes). * elf-objfmt.c (elf_objfmt_section_switch): Add support for GAS-style section flags. * x86arch.h (yasm_arch_x86): Add parser setting. * x86arch.c (x86_create): Check for gas parser and initialize setting. * x86bc.c (yasm_x86__ea_create_expr): Transform val+RIP to val wrt RIP when using the GAS parser (this is how GAS interprets "expr(%rip)"). * x86id.re: Too many changes to enumerate in detail. Add new modifiers for GAS suffixes. Start using them in a couple instructions. Split check_id into subfunctions (still one entry point at present). (yasm_x86__finalize_insn): Support new modifiers, reverse operands, derefs. * yasm.c (main): Change all undef to extern when using GAS parser (this is default GAS behavior). svn path=/trunk/yasm/; revision=1239
19 years ago
retval->deref = 0;
retval->strict = 0;
return retval;
}
yasm_insn_operand *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_create_imm(/*@only@*/ yasm_expr *val)
{
yasm_insn_operand *retval;
const unsigned long *reg;
reg = yasm_expr_get_reg(&val, 0);
if (reg) {
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
retval = yasm_operand_create_reg(*reg);
yasm_expr_destroy(val);
} else {
retval = yasm_xmalloc(sizeof(yasm_insn_operand));
retval->type = YASM_INSN__OPERAND_IMM;
retval->data.val = val;
retval->targetmod = 0;
retval->size = 0;
Preliminary GAS parser. Only a few instructions are supported at present. This work is being done under contract with a company that has requested to remain unnamed at the present time. * bc-int.h (yasm_effaddr): Add strong flag to indicate if the effective address is definitely an effective address; GAS does not use [] to designate effective addresses so it's otherwise impossible to tell the difference between "expr(,1)" and just "expr" (important for the relative jump instructions). * bytecode.h (yasm_ea_set_strong): New function to set the strong flag. * bytecode.c (yasm_ea_set_strong): Implementation. * x86bc.c (yasm_x86__ea_create_reg): Initialize strong flag. * arch.h (yasm_insn_operand): Add deref flag to indicate use of "*foo" in GAS syntax. * arch.c (yasm_operand_create_reg, yasm_operand_create_segreg) (yasm_operand_create_mem, yasm_operand_create_imm): Set deref flag to 0. * gas: GAS syntax lexer and parser. Not all directives are implemented yet (some will require additional core bytecodes). * elf-objfmt.c (elf_objfmt_section_switch): Add support for GAS-style section flags. * x86arch.h (yasm_arch_x86): Add parser setting. * x86arch.c (x86_create): Check for gas parser and initialize setting. * x86bc.c (yasm_x86__ea_create_expr): Transform val+RIP to val wrt RIP when using the GAS parser (this is how GAS interprets "expr(%rip)"). * x86id.re: Too many changes to enumerate in detail. Add new modifiers for GAS suffixes. Start using them in a couple instructions. Split check_id into subfunctions (still one entry point at present). (yasm_x86__finalize_insn): Support new modifiers, reverse operands, derefs. * yasm.c (main): Change all undef to extern when using GAS parser (this is default GAS behavior). svn path=/trunk/yasm/; revision=1239
19 years ago
retval->deref = 0;
retval->strict = 0;
}
return retval;
}
void
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_print(const yasm_insn_operand *op, FILE *f, int indent_level,
yasm_arch *arch)
{
switch (op->type) {
case YASM_INSN__OPERAND_REG:
fprintf(f, "%*sReg=", indent_level, "");
yasm_arch_reg_print(arch, op->data.reg, f);
fprintf(f, "\n");
break;
case YASM_INSN__OPERAND_SEGREG:
fprintf(f, "%*sSegReg=", indent_level, "");
yasm_arch_segreg_print(arch, op->data.reg, f);
fprintf(f, "\n");
break;
case YASM_INSN__OPERAND_MEMORY:
fprintf(f, "%*sMemory=\n", indent_level, "");
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_ea_print(op->data.ea, f, indent_level);
break;
case YASM_INSN__OPERAND_IMM:
fprintf(f, "%*sImm=", indent_level, "");
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_expr_print(op->data.val, f);
fprintf(f, "\n");
break;
}
fprintf(f, "%*sTargetMod=%lx\n", indent_level+1, "", op->targetmod);
fprintf(f, "%*sSize=%u\n", indent_level+1, "", op->size);
fprintf(f, "%*sDeref=%d, Strict=%d\n", indent_level+1, "", (int)op->deref,
(int)op->strict);
}
void
yasm_ops_delete(yasm_insn_operands *headp, int content)
{
yasm_insn_operand *cur, *next;
cur = STAILQ_FIRST(headp);
while (cur) {
next = STAILQ_NEXT(cur, link);
if (content)
switch (cur->type) {
case YASM_INSN__OPERAND_MEMORY:
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_ea_destroy(cur->data.ea);
break;
case YASM_INSN__OPERAND_IMM:
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_expr_destroy(cur->data.val);
break;
default:
break;
}
yasm_xfree(cur);
cur = next;
}
STAILQ_INIT(headp);
}
/*@null@*/ yasm_insn_operand *
yasm_ops_append(yasm_insn_operands *headp,
/*@returned@*/ /*@null@*/ yasm_insn_operand *op)
{
if (op) {
STAILQ_INSERT_TAIL(headp, op, link);
return op;
}
return (yasm_insn_operand *)NULL;
}
void
yasm_ops_print(const yasm_insn_operands *headp, FILE *f, int indent_level,
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_arch *arch)
{
yasm_insn_operand *cur;
STAILQ_FOREACH (cur, headp, link)
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_print(cur, f, indent_level, arch);
}
yasm_insn_operands *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_ops_create(void)
{
yasm_insn_operands *headp = yasm_xmalloc(sizeof(yasm_insn_operands));
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_ops_initialize(headp);
return headp;
}
void
yasm_ops_destroy(yasm_insn_operands *headp, int content)
{
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_ops_delete(headp, content);
yasm_xfree(headp);
}
/* Non-macro yasm_ops_first() for non-YASM_LIB_INTERNAL users. */
#undef yasm_ops_first
yasm_insn_operand *
yasm_ops_first(yasm_insn_operands *headp)
{
return STAILQ_FIRST(headp);
}
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
/* Non-macro yasm_operand_next() for non-YASM_LIB_INTERNAL users. */
#undef yasm_operand_next
yasm_insn_operand *
Massive libyasm / module interface update - Phase 1 As yasm has evolved, various minor additions have been made to libyasm to support the new features. These minor additions have accumulated, and some contain significant redundancies. In addition, the core focus of yasm has begun to move away from the front-end commandline program "yasm" to focusing on libyasm, a collection of reusable routines for use in all sorts of programs dealing with code at the assembly level, and the modules that provide specific features for parsing such code. This libyasm/module update focuses on cleaning up much of the cruft that has accumulated in libyasm, standardizing function names, eliminating redundancies, making many of the core objects more reusable for future extensions, and starting to make libyasm and the modules thread-safe by eliminating static variables. Specific changes include: - Making a symbol table data structure (no longer global). It follows a factory model for creating symrecs. - Label symbols now refer only to bytecodes; bytecodes have a pointer to their containing section. - Standardizing on *_create() and *_destroy() for allocation/deallocation. - Adding a standardized callback mechanism for all data structures that allow associated data. Allowed the removal of objfmt and dbgfmt-specific data callbacks in their interfaces. - Unmodularizing linemgr, but allowing multiple linemap instances (linemgr is now renamed linemap). - Remove references to lindex; all virtual lines (from linemap) are now just "line"s. - Eliminating the bytecode "type" enum, instead adding a standardized callback mechanism for custom (and standard internal) bytecode types. This will make it much easier to add new bytecodes, and eliminate the possibility of type collisions. This also allowed the removal of the of_data and df_data bytecodes, as objfmts and dbgfmts can now easily implement their own bytecodes, and the cleanup of arch's bytecode usage. - Remove the bytecodehead and sectionhead pseudo-containers, instead making true containers: section now implements all the functions of bytecodehead, and the new object data structure implements all the functions of sectionhead. - Add object data structure: it's a container that contains sections, a symbol table, and a line mapping for a single object. Every former use of sectionhead now takes an object. - Make arch interface and all standard architectures thread-safe: yasm_arch_module is the module interface; it contains a create() function that returns a yasm_arch * to store local yasm_arch data; all yasm_arch_module functions take the yasm_arch *. - Make nasm parser thread-safe. To be done in phase 2: making other module interfaces thread-safe. Note that while the module interface may be thread-safe, not all modules may be written in such a fashion (hopefully all the "standard" ones will be, but this is yet to be determined). svn path=/trunk/yasm/; revision=1058
21 years ago
yasm_operand_next(yasm_insn_operand *cur)
{
return STAILQ_NEXT(cur, link);
}