|
|
|
/*
|
|
|
|
* Expression handling
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001 Michael Urman, Peter Johnson
|
|
|
|
*
|
|
|
|
* This file is part of YASM.
|
|
|
|
*
|
|
|
|
* YASM is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* YASM is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
#include "util.h"
|
|
|
|
/*@unused@*/ RCSID("$IdPath$");
|
|
|
|
|
|
|
|
#include "bitvect.h"
|
|
|
|
|
|
|
|
#include "globals.h"
|
|
|
|
#include "errwarn.h"
|
|
|
|
#include "intnum.h"
|
|
|
|
#include "floatnum.h"
|
|
|
|
#include "expr.h"
|
|
|
|
#include "symrec.h"
|
|
|
|
|
|
|
|
#include "expr-int.h"
|
|
|
|
|
|
|
|
|
|
|
|
static int expr_traverse_nodes_post(/*@null@*/ expr *e, /*@null@*/ void *d,
|
|
|
|
int (*func) (/*@null@*/ expr *e,
|
|
|
|
/*@null@*/ void *d));
|
|
|
|
|
|
|
|
/* allocate a new expression node, with children as defined.
|
|
|
|
* If it's a unary operator, put the element in left and set right=NULL. */
|
|
|
|
/*@-usedef@*/
|
|
|
|
expr *
|
|
|
|
expr_new(ExprOp op, ExprItem *left, ExprItem *right)
|
|
|
|
{
|
|
|
|
expr *ptr, *sube;
|
|
|
|
ptr = xmalloc(sizeof(expr));
|
|
|
|
|
|
|
|
ptr->op = op;
|
|
|
|
ptr->numterms = 0;
|
|
|
|
ptr->terms[0].type = EXPR_NONE;
|
|
|
|
ptr->terms[1].type = EXPR_NONE;
|
|
|
|
if (left) {
|
|
|
|
ptr->terms[0] = *left; /* structure copy */
|
|
|
|
xfree(left);
|
|
|
|
ptr->numterms++;
|
|
|
|
|
|
|
|
/* Search downward until we find something *other* than an
|
|
|
|
* IDENT, then bring it up to the current level.
|
|
|
|
*/
|
|
|
|
while (ptr->terms[0].type == EXPR_EXPR &&
|
|
|
|
ptr->terms[0].data.expn->op == EXPR_IDENT) {
|
|
|
|
sube = ptr->terms[0].data.expn;
|
|
|
|
ptr->terms[0] = sube->terms[0]; /* structure copy */
|
|
|
|
/*@-usereleased@*/
|
|
|
|
xfree(sube);
|
|
|
|
/*@=usereleased@*/
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
InternalError(_("Right side of expression must exist"));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (right) {
|
|
|
|
ptr->terms[1] = *right; /* structure copy */
|
|
|
|
xfree(right);
|
|
|
|
ptr->numterms++;
|
|
|
|
|
|
|
|
/* Search downward until we find something *other* than an
|
|
|
|
* IDENT, then bring it up to the current level.
|
|
|
|
*/
|
|
|
|
while (ptr->terms[1].type == EXPR_EXPR &&
|
|
|
|
ptr->terms[1].data.expn->op == EXPR_IDENT) {
|
|
|
|
sube = ptr->terms[1].data.expn;
|
|
|
|
ptr->terms[1] = sube->terms[0]; /* structure copy */
|
|
|
|
/*@-usereleased@*/
|
|
|
|
xfree(sube);
|
|
|
|
/*@=usereleased@*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ptr->filename = in_filename;
|
|
|
|
ptr->line = line_number;
|
|
|
|
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
/*@=usedef@*/
|
|
|
|
|
|
|
|
/* helpers */
|
|
|
|
ExprItem *
|
|
|
|
ExprSym(symrec *s)
|
|
|
|
{
|
|
|
|
ExprItem *e = xmalloc(sizeof(ExprItem));
|
|
|
|
e->type = EXPR_SYM;
|
|
|
|
e->data.sym = s;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprItem *
|
|
|
|
ExprExpr(expr *x)
|
|
|
|
{
|
|
|
|
ExprItem *e = xmalloc(sizeof(ExprItem));
|
|
|
|
e->type = EXPR_EXPR;
|
|
|
|
e->data.expn = x;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprItem *
|
|
|
|
ExprInt(intnum *i)
|
|
|
|
{
|
|
|
|
ExprItem *e = xmalloc(sizeof(ExprItem));
|
|
|
|
e->type = EXPR_INT;
|
|
|
|
e->data.intn = i;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprItem *
|
|
|
|
ExprFloat(floatnum *f)
|
|
|
|
{
|
|
|
|
ExprItem *e = xmalloc(sizeof(ExprItem));
|
|
|
|
e->type = EXPR_FLOAT;
|
|
|
|
e->data.flt = f;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
ExprItem *
|
|
|
|
ExprReg(unsigned char reg, unsigned char size)
|
|
|
|
{
|
|
|
|
ExprItem *e = xmalloc(sizeof(ExprItem));
|
|
|
|
e->type = EXPR_REG;
|
|
|
|
e->data.reg.num = reg;
|
|
|
|
e->data.reg.size = size;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Negate just a single ExprItem by building a -1*ei subexpression */
|
|
|
|
static void
|
|
|
|
expr_xform_neg_item(expr *e, ExprItem *ei)
|
|
|
|
{
|
|
|
|
expr *sube = xmalloc(sizeof(expr));
|
|
|
|
|
|
|
|
/* Build -1*ei subexpression */
|
|
|
|
sube->op = EXPR_MUL;
|
|
|
|
sube->filename = e->filename;
|
|
|
|
sube->line = e->line;
|
|
|
|
sube->numterms = 2;
|
|
|
|
sube->terms[0].type = EXPR_INT;
|
|
|
|
sube->terms[0].data.intn = intnum_new_int((unsigned long)-1);
|
|
|
|
sube->terms[1] = *ei; /* structure copy */
|
|
|
|
|
|
|
|
/* Replace original ExprItem with subexp */
|
|
|
|
ei->type = EXPR_EXPR;
|
|
|
|
ei->data.expn = sube;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Negates e by multiplying by -1, with distribution over lower-precedence
|
|
|
|
* operators (eg ADD) and special handling to simplify result w/ADD, NEG, and
|
|
|
|
* others.
|
|
|
|
*
|
|
|
|
* Returns a possibly reallocated e.
|
|
|
|
*/
|
|
|
|
static /*@only@*/ expr *
|
|
|
|
expr_xform_neg_helper(/*@returned@*/ /*@only@*/ expr *e)
|
|
|
|
{
|
|
|
|
expr *ne;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
switch (e->op) {
|
|
|
|
case EXPR_ADD:
|
|
|
|
/* distribute (recursively if expr) over terms */
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR)
|
|
|
|
e->terms[i].data.expn =
|
|
|
|
expr_xform_neg_helper(e->terms[i].data.expn);
|
|
|
|
else
|
|
|
|
expr_xform_neg_item(e, &e->terms[i]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EXPR_SUB:
|
|
|
|
/* change op to ADD, and recursively negate left side (if expr) */
|
|
|
|
e->op = EXPR_ADD;
|
|
|
|
if (e->terms[0].type == EXPR_EXPR)
|
|
|
|
e->terms[0].data.expn =
|
|
|
|
expr_xform_neg_helper(e->terms[0].data.expn);
|
|
|
|
else
|
|
|
|
expr_xform_neg_item(e, &e->terms[0]);
|
|
|
|
break;
|
|
|
|
case EXPR_NEG:
|
|
|
|
/* Negating a negated value? Make it an IDENT. */
|
|
|
|
e->op = EXPR_IDENT;
|
|
|
|
break;
|
|
|
|
case EXPR_IDENT:
|
|
|
|
/* Negating an ident? Change it into a MUL w/ -1. */
|
|
|
|
e->op = EXPR_MUL;
|
|
|
|
e->numterms = 2;
|
|
|
|
e->terms[1].type = EXPR_INT;
|
|
|
|
e->terms[1].data.intn = intnum_new_int((unsigned long)-1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Everything else. MUL will be combined when it's leveled.
|
|
|
|
* Make a new expr (to replace e) with -1*e.
|
|
|
|
*/
|
|
|
|
ne = xmalloc(sizeof(expr));
|
|
|
|
ne->op = EXPR_MUL;
|
|
|
|
ne->filename = e->filename;
|
|
|
|
ne->line = e->line;
|
|
|
|
ne->numterms = 2;
|
|
|
|
ne->terms[0].type = EXPR_INT;
|
|
|
|
ne->terms[0].data.intn = intnum_new_int((unsigned long)-1);
|
|
|
|
ne->terms[1].type = EXPR_EXPR;
|
|
|
|
ne->terms[1].data.expn = e;
|
|
|
|
return ne;
|
|
|
|
}
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Transforms negatives into expressions that are easier to combine:
|
|
|
|
* -x -> -1*x
|
|
|
|
* a-b -> a+(-1*b)
|
|
|
|
*
|
|
|
|
* Call post-order on an expression tree to transform the entire tree.
|
|
|
|
*
|
|
|
|
* Returns a possibly reallocated e.
|
|
|
|
*/
|
|
|
|
static /*@only@*/ expr *
|
|
|
|
expr_xform_neg(/*@returned@*/ /*@only@*/ expr *e)
|
|
|
|
{
|
|
|
|
switch (e->op) {
|
|
|
|
case EXPR_NEG:
|
|
|
|
/* Turn -x into -1*x */
|
|
|
|
e->op = EXPR_IDENT;
|
|
|
|
return expr_xform_neg_helper(e);
|
|
|
|
case EXPR_SUB:
|
|
|
|
/* Turn a-b into a+(-1*b) */
|
|
|
|
|
|
|
|
/* change op to ADD, and recursively negate right side (if expr) */
|
|
|
|
e->op = EXPR_ADD;
|
|
|
|
if (e->terms[1].type == EXPR_EXPR)
|
|
|
|
e->terms[1].data.expn =
|
|
|
|
expr_xform_neg_helper(e->terms[1].data.expn);
|
|
|
|
else
|
|
|
|
expr_xform_neg_item(e, &e->terms[1]);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Transform negatives throughout an entire expn tree */
|
|
|
|
expr *
|
|
|
|
expr_xform_neg_tree(expr *e)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* traverse terms */
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR)
|
|
|
|
e->terms[i].data.expn = expr_xform_neg_tree(e->terms[i].data.expn);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do callback */
|
|
|
|
return expr_xform_neg(e);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Look for simple identities that make the entire result constant:
|
|
|
|
* 0*&x, -1|x, etc.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
expr_is_constant(ExprOp op, intnum *intn)
|
|
|
|
{
|
|
|
|
return ((intnum_is_zero(intn) && op == EXPR_MUL) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_AND) ||
|
|
|
|
(intnum_is_neg1(intn) && op == EXPR_OR));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Look for simple "left" identities like 0+x, 1*x, etc. */
|
|
|
|
static int
|
|
|
|
expr_can_delete_int_left(ExprOp op, intnum *intn)
|
|
|
|
{
|
|
|
|
return ((intnum_is_pos1(intn) && op == EXPR_MUL) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_ADD) ||
|
|
|
|
(intnum_is_neg1(intn) && op == EXPR_AND) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_OR));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Look for simple "right" identities like x+|-0, x*&/1 */
|
|
|
|
static int
|
|
|
|
expr_can_delete_int_right(ExprOp op, intnum *intn)
|
|
|
|
{
|
|
|
|
return ((intnum_is_pos1(intn) && op == EXPR_MUL) ||
|
|
|
|
(intnum_is_pos1(intn) && op == EXPR_DIV) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_ADD) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_SUB) ||
|
|
|
|
(intnum_is_neg1(intn) && op == EXPR_AND) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_OR) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_SHL) ||
|
|
|
|
(intnum_is_zero(intn) && op == EXPR_SHR));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for and simplify identities. Returns new number of expr terms.
|
|
|
|
* Sets e->op = EXPR_IDENT if numterms ends up being 1.
|
|
|
|
* Uses numterms parameter instead of e->numterms for basis of "new" number
|
|
|
|
* of terms.
|
|
|
|
* Assumes int_term is *only* integer term in e.
|
|
|
|
* NOTE: Really designed to only be used by expr_level_op().
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
expr_simplify_identity(expr *e, int numterms, int int_term)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Check for simple identities that delete the intnum.
|
|
|
|
* Don't delete if the intnum is the only thing in the expn.
|
|
|
|
*/
|
|
|
|
if ((int_term == 0 && numterms > 1 &&
|
|
|
|
expr_can_delete_int_left(e->op, e->terms[0].data.intn)) ||
|
|
|
|
(int_term > 0 &&
|
|
|
|
expr_can_delete_int_right(e->op, e->terms[int_term].data.intn))) {
|
|
|
|
/* Delete the intnum */
|
|
|
|
intnum_delete(e->terms[int_term].data.intn);
|
|
|
|
|
|
|
|
/* Slide everything to its right over by 1 */
|
|
|
|
if (int_term != numterms-1) /* if it wasn't last.. */
|
|
|
|
memmove(&e->terms[int_term], &e->terms[int_term+1],
|
|
|
|
(numterms-1-int_term)*sizeof(ExprItem));
|
|
|
|
|
|
|
|
/* Update numterms */
|
|
|
|
numterms--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for simple identites that delete everything BUT the intnum.
|
|
|
|
* Don't bother if the intnum is the only thing in the expn.
|
|
|
|
*/
|
|
|
|
if (numterms > 1 &&
|
|
|
|
expr_is_constant(e->op, e->terms[int_term].data.intn)) {
|
|
|
|
/* Loop through, deleting everything but the integer term */
|
|
|
|
for (i=0; i<e->numterms; i++)
|
|
|
|
if (i != int_term)
|
|
|
|
switch (e->terms[i].type) {
|
|
|
|
case EXPR_INT:
|
|
|
|
intnum_delete(e->terms[i].data.intn);
|
|
|
|
break;
|
|
|
|
case EXPR_FLOAT:
|
|
|
|
floatnum_delete(e->terms[i].data.flt);
|
|
|
|
break;
|
|
|
|
case EXPR_EXPR:
|
|
|
|
expr_delete(e->terms[i].data.expn);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Move integer term to the first term (if not already there) */
|
|
|
|
if (int_term != 0)
|
|
|
|
e->terms[0] = e->terms[int_term]; /* structure copy */
|
|
|
|
|
|
|
|
/* Set numterms to 1 */
|
|
|
|
numterms = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Change expression to IDENT if possible. */
|
|
|
|
if (numterms == 1)
|
|
|
|
e->op = EXPR_IDENT;
|
|
|
|
|
|
|
|
/* Return the updated numterms */
|
|
|
|
return numterms;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Levels the expression tree starting at e. Eg:
|
|
|
|
* a+(b+c) -> a+b+c
|
|
|
|
* (a+b)+(c+d) -> a+b+c+d
|
|
|
|
* Naturally, only levels operators that allow more than two operand terms.
|
|
|
|
* NOTE: only does *one* level of leveling (no recursion). Should be called
|
|
|
|
* post-order on a tree to combine deeper levels.
|
|
|
|
* Also brings up any IDENT values into the current level (for ALL operators).
|
|
|
|
* Folds (combines by evaluation) *integer* constant values if fold_const != 0.
|
|
|
|
*
|
|
|
|
* Returns a possibly reallocated e.
|
|
|
|
*/
|
|
|
|
/*@-mustfree@*/
|
|
|
|
static /*@only@*/ expr *
|
|
|
|
expr_level_op(/*@returned@*/ /*@only@*/ expr *e, int fold_const,
|
|
|
|
int simplify_ident)
|
|
|
|
{
|
|
|
|
int i, j, o, fold_numterms, level_numterms, level_fold_numterms;
|
|
|
|
int first_int_term = -1;
|
|
|
|
|
|
|
|
/* Determine how many operands will need to be brought up (for leveling).
|
|
|
|
* Go ahead and bring up any IDENT'ed values.
|
|
|
|
*/
|
|
|
|
level_numterms = e->numterms;
|
|
|
|
level_fold_numterms = 0;
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
/* Search downward until we find something *other* than an
|
|
|
|
* IDENT, then bring it up to the current level.
|
|
|
|
*/
|
|
|
|
while (e->terms[i].type == EXPR_EXPR &&
|
|
|
|
e->terms[i].data.expn->op == EXPR_IDENT) {
|
|
|
|
expr *sube = e->terms[i].data.expn;
|
|
|
|
e->terms[i] = sube->terms[0];
|
|
|
|
xfree(sube);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (e->terms[i].type == EXPR_EXPR &&
|
|
|
|
e->terms[i].data.expn->op == e->op) {
|
|
|
|
/* It's an expression w/the same operator, add in its numterms.
|
|
|
|
* But don't forget to subtract one for the expr itself!
|
|
|
|
*/
|
|
|
|
level_numterms += e->terms[i].data.expn->numterms - 1;
|
|
|
|
|
|
|
|
/* If we're folding constants, count up the number of constants
|
|
|
|
* that will be merged in.
|
|
|
|
*/
|
|
|
|
if (fold_const)
|
|
|
|
for (j=0; j<e->terms[i].data.expn->numterms; j++)
|
|
|
|
if (e->terms[i].data.expn->terms[j].type == EXPR_INT)
|
|
|
|
level_fold_numterms++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find the first integer term (if one is present) if we're folding
|
|
|
|
* constants.
|
|
|
|
*/
|
|
|
|
if (fold_const && first_int_term == -1 && e->terms[i].type == EXPR_INT)
|
|
|
|
first_int_term = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Look for other integer terms if there's one and combine.
|
|
|
|
* Also eliminate empty spaces when combining and adjust numterms
|
|
|
|
* variables.
|
|
|
|
*/
|
|
|
|
fold_numterms = e->numterms;
|
|
|
|
if (first_int_term != -1) {
|
|
|
|
for (i=first_int_term+1, o=first_int_term+1; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_INT) {
|
|
|
|
intnum_calc(e->terms[first_int_term].data.intn, e->op,
|
|
|
|
e->terms[i].data.intn);
|
|
|
|
fold_numterms--;
|
|
|
|
level_numterms--;
|
|
|
|
/* make sure to delete folded intnum */
|
|
|
|
intnum_delete(e->terms[i].data.intn);
|
|
|
|
} else if (o != i) {
|
|
|
|
/* copy term if it changed places */
|
|
|
|
e->terms[o++] = e->terms[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (simplify_ident)
|
|
|
|
/* Simplify identities and make IDENT if possible. */
|
|
|
|
fold_numterms = expr_simplify_identity(e, fold_numterms,
|
|
|
|
first_int_term);
|
|
|
|
else if (fold_numterms == 1)
|
|
|
|
e->op = EXPR_IDENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Only level operators that allow more than two operand terms.
|
|
|
|
* Also don't bother leveling if it's not necessary to bring up any terms.
|
|
|
|
*/
|
|
|
|
if ((e->op != EXPR_ADD && e->op != EXPR_MUL && e->op != EXPR_OR &&
|
|
|
|
e->op != EXPR_AND && e->op != EXPR_XOR) ||
|
|
|
|
level_numterms <= fold_numterms) {
|
|
|
|
/* Downsize e if necessary */
|
|
|
|
if (fold_numterms < e->numterms && e->numterms > 2)
|
|
|
|
e = xrealloc(e, sizeof(expr)+((fold_numterms<2) ? 0 :
|
|
|
|
sizeof(ExprItem)*(fold_numterms-2)));
|
|
|
|
/* Update numterms */
|
|
|
|
e->numterms = fold_numterms;
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Adjust numterms for constant folding from terms being "pulled up".
|
|
|
|
* Careful: if there's no integer term in e, then save space for it.
|
|
|
|
*/
|
|
|
|
if (fold_const) {
|
|
|
|
level_numterms -= level_fold_numterms;
|
|
|
|
if (first_int_term == -1 && level_fold_numterms != 0)
|
|
|
|
level_numterms++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Alloc more (or conceivably less, but not usually) space for e */
|
|
|
|
e = xrealloc(e, sizeof(expr)+((level_numterms<2) ? 0 :
|
|
|
|
sizeof(ExprItem)*(level_numterms-2)));
|
|
|
|
|
|
|
|
/* Copy up ExprItem's. Iterate from right to left to keep the same
|
|
|
|
* ordering as was present originally.
|
|
|
|
* Combine integer terms as necessary.
|
|
|
|
*/
|
|
|
|
for (i=e->numterms-1, o=level_numterms-1; i>=0; i--) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR &&
|
|
|
|
e->terms[i].data.expn->op == e->op) {
|
|
|
|
/* bring up subexpression */
|
|
|
|
expr *sube = e->terms[i].data.expn;
|
|
|
|
|
|
|
|
/* copy terms right to left */
|
|
|
|
for (j=sube->numterms-1; j>=0; j--) {
|
|
|
|
if (fold_const && sube->terms[j].type == EXPR_INT) {
|
|
|
|
/* Need to fold it in.. but if there's no int term already,
|
|
|
|
* just copy into a new one.
|
|
|
|
*/
|
|
|
|
if (first_int_term == -1) {
|
|
|
|
first_int_term = o--;
|
|
|
|
e->terms[first_int_term] = sube->terms[j]; /* struc */
|
|
|
|
} else {
|
|
|
|
intnum_calc(e->terms[first_int_term].data.intn, e->op,
|
|
|
|
sube->terms[j].data.intn);
|
|
|
|
/* make sure to delete folded intnum */
|
|
|
|
intnum_delete(sube->terms[j].data.intn);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (o == first_int_term)
|
|
|
|
o--;
|
|
|
|
e->terms[o--] = sube->terms[j]; /* structure copy */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* delete subexpression, but *don't delete nodes* (as we've just
|
|
|
|
* copied them!)
|
|
|
|
*/
|
|
|
|
xfree(sube);
|
|
|
|
} else if (o != i) {
|
|
|
|
/* copy operand if it changed places */
|
|
|
|
if (o == first_int_term)
|
|
|
|
o--;
|
|
|
|
e->terms[o] = e->terms[i];
|
|
|
|
/* If we moved the first_int_term, change first_int_num too */
|
|
|
|
if (i == first_int_term)
|
|
|
|
first_int_term = o;
|
|
|
|
o--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Simplify identities, make IDENT if possible, and save to e->numterms. */
|
|
|
|
if (simplify_ident && first_int_term != -1) {
|
|
|
|
e->numterms = expr_simplify_identity(e, level_numterms,
|
|
|
|
first_int_term);
|
|
|
|
} else {
|
|
|
|
e->numterms = level_numterms;
|
|
|
|
if (level_numterms == 1)
|
|
|
|
e->op = EXPR_IDENT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
/*@=mustfree@*/
|
|
|
|
|
|
|
|
/* Level an entire expn tree */
|
|
|
|
expr *
|
|
|
|
expr_level_tree(expr *e, int fold_const, int simplify_ident)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* traverse terms */
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR)
|
|
|
|
e->terms[i].data.expn = expr_level_tree(e->terms[i].data.expn,
|
|
|
|
fold_const,
|
|
|
|
simplify_ident);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do callback */
|
|
|
|
return expr_level_op(e, fold_const, simplify_ident);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Comparison function for expr_order_terms().
|
|
|
|
* Assumes ExprType enum is in canonical order.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
expr_order_terms_compare(const void *va, const void *vb)
|
|
|
|
{
|
|
|
|
const ExprItem *a = va, *b = vb;
|
|
|
|
return (a->type - b->type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reorder terms of e into canonical order. Only reorders if reordering
|
|
|
|
* doesn't change meaning of expression. (eg, doesn't reorder SUB).
|
|
|
|
* Canonical order: REG, INT, FLOAT, SYM, EXPR.
|
|
|
|
* Multiple terms of a single type are kept in the same order as in
|
|
|
|
* the original expression.
|
|
|
|
* NOTE: Only performs reordering on *one* level (no recursion).
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
expr_order_terms(expr *e)
|
|
|
|
{
|
|
|
|
/* don't bother reordering if only one element */
|
|
|
|
if (e->numterms == 1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* only reorder some types of operations */
|
|
|
|
switch (e->op) {
|
|
|
|
case EXPR_ADD:
|
|
|
|
case EXPR_MUL:
|
|
|
|
case EXPR_OR:
|
|
|
|
case EXPR_AND:
|
|
|
|
case EXPR_XOR:
|
|
|
|
/* Use mergesort to sort. It's fast on already sorted values and a
|
|
|
|
* stable sort (multiple terms of same type are kept in the same
|
|
|
|
* order).
|
|
|
|
*/
|
|
|
|
mergesort(e->terms, (size_t)e->numterms, sizeof(ExprItem),
|
|
|
|
expr_order_terms_compare);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy entire expression EXCEPT for index "except" at *top level only*. */
|
|
|
|
expr *
|
|
|
|
expr_copy_except(const expr *e, int except)
|
|
|
|
{
|
|
|
|
expr *n;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
n = xmalloc(sizeof(expr)+sizeof(ExprItem)*(e->numterms<2?0:e->numterms-2));
|
|
|
|
|
|
|
|
n->op = e->op;
|
|
|
|
n->filename = e->filename;
|
|
|
|
n->line = e->line;
|
|
|
|
n->numterms = e->numterms;
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
ExprItem *dest = &n->terms[i];
|
|
|
|
const ExprItem *src = &e->terms[i];
|
|
|
|
|
|
|
|
if (i != except) {
|
|
|
|
dest->type = src->type;
|
|
|
|
switch (src->type) {
|
|
|
|
case EXPR_SYM:
|
|
|
|
dest->data.sym = src->data.sym;
|
|
|
|
break;
|
|
|
|
case EXPR_EXPR:
|
|
|
|
dest->data.expn = expr_copy_except(src->data.expn, -1);
|
|
|
|
break;
|
|
|
|
case EXPR_INT:
|
|
|
|
dest->data.intn = intnum_copy(src->data.intn);
|
|
|
|
break;
|
|
|
|
case EXPR_FLOAT:
|
|
|
|
dest->data.flt = floatnum_copy(src->data.flt);
|
|
|
|
break;
|
|
|
|
case EXPR_REG:
|
|
|
|
dest->data.reg.num = src->data.reg.num;
|
|
|
|
dest->data.reg.size = src->data.reg.size;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
expr *
|
|
|
|
expr_copy(const expr *e)
|
|
|
|
{
|
|
|
|
return expr_copy_except(e, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
expr_delete_each(/*@only@*/ expr *e, /*@unused@*/ void *d)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
switch (e->terms[i].type) {
|
|
|
|
case EXPR_INT:
|
|
|
|
intnum_delete(e->terms[i].data.intn);
|
|
|
|
break;
|
|
|
|
case EXPR_FLOAT:
|
|
|
|
floatnum_delete(e->terms[i].data.flt);
|
|
|
|
break;
|
|
|
|
case EXPR_SYM:
|
|
|
|
/* call symrec_delete in case sym isn't in the symbol table */
|
|
|
|
symrec_delete(e->terms[i].data.sym);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break; /* none of the other types needs to be deleted */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
xfree(e); /* free ourselves */
|
|
|
|
return 0; /* don't stop recursion */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*@-mustfree@*/
|
|
|
|
void
|
|
|
|
expr_delete(expr *e)
|
|
|
|
{
|
|
|
|
expr_traverse_nodes_post(e, NULL, expr_delete_each);
|
|
|
|
}
|
|
|
|
/*@=mustfree@*/
|
|
|
|
|
|
|
|
static int
|
|
|
|
expr_contains_callback(ExprItem *ei, void *d)
|
|
|
|
{
|
|
|
|
ExprType *t = d;
|
|
|
|
return (ei->type & *t);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
expr_contains(expr *e, ExprType t)
|
|
|
|
{
|
|
|
|
return expr_traverse_leaves_in(e, &t, expr_contains_callback);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
expr_expand_equ_callback(ExprItem *ei, /*@unused@*/ void *d)
|
|
|
|
{
|
|
|
|
const expr *equ_expr;
|
|
|
|
if (ei->type == EXPR_SYM) {
|
|
|
|
equ_expr = symrec_get_equ(ei->data.sym);
|
|
|
|
if (equ_expr) {
|
|
|
|
ei->type = EXPR_EXPR;
|
|
|
|
ei->data.expn = expr_copy(equ_expr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
expr_expand_equ(expr *e)
|
|
|
|
{
|
|
|
|
expr_traverse_leaves_in(e, NULL, expr_expand_equ_callback);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Traverse over expression tree, calling func for each operation AFTER the
|
|
|
|
* branches (if expressions) have been traversed (eg, postorder
|
|
|
|
* traversal). The data pointer d is passed to each func call.
|
|
|
|
*
|
|
|
|
* Stops early (and returns 1) if func returns 1. Otherwise returns 0.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
expr_traverse_nodes_post(expr *e, void *d,
|
|
|
|
int (*func) (/*@null@*/ expr *e, /*@null@*/ void *d))
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* traverse terms */
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR &&
|
|
|
|
expr_traverse_nodes_post(e->terms[i].data.expn, d, func))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do callback */
|
|
|
|
return func(e, d);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Traverse over expression tree in order, calling func for each leaf
|
|
|
|
* (non-operation). The data pointer d is passed to each func call.
|
|
|
|
*
|
|
|
|
* Stops early (and returns 1) if func returns 1. Otherwise returns 0.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
expr_traverse_leaves_in(expr *e, void *d,
|
|
|
|
int (*func) (/*@null@*/ ExprItem *ei,
|
|
|
|
/*@null@*/ void *d))
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
if (e->terms[i].type == EXPR_EXPR) {
|
|
|
|
if (expr_traverse_leaves_in(e->terms[i].data.expn, d, func))
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
if (func(&e->terms[i], d))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Simplify expression by getting rid of unnecessary branches. */
|
|
|
|
expr *
|
|
|
|
expr_simplify(expr *e)
|
|
|
|
{
|
|
|
|
e = expr_xform_neg_tree(e);
|
|
|
|
e = expr_level_tree(e, 1, 1);
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*@-unqualifiedtrans -nullderef -nullstate -onlytrans@*/
|
|
|
|
const intnum *
|
|
|
|
expr_get_intnum(expr **ep)
|
|
|
|
{
|
|
|
|
*ep = expr_simplify(*ep);
|
|
|
|
|
|
|
|
if ((*ep)->op == EXPR_IDENT && (*ep)->terms[0].type == EXPR_INT)
|
|
|
|
return (*ep)->terms[0].data.intn;
|
|
|
|
else
|
|
|
|
return (intnum *)NULL;
|
|
|
|
}
|
|
|
|
/*@=unqualifiedtrans =nullderef -nullstate -onlytrans@*/
|
|
|
|
|
|
|
|
/*@-unqualifiedtrans -nullderef -nullstate -onlytrans@*/
|
|
|
|
const symrec *
|
|
|
|
expr_get_symrec(expr **ep, int simplify)
|
|
|
|
{
|
|
|
|
if (simplify)
|
|
|
|
*ep = expr_simplify(*ep);
|
|
|
|
|
|
|
|
if ((*ep)->op == EXPR_IDENT && (*ep)->terms[0].type == EXPR_SYM)
|
|
|
|
return (*ep)->terms[0].data.sym;
|
|
|
|
else
|
|
|
|
return (symrec *)NULL;
|
|
|
|
}
|
|
|
|
/*@=unqualifiedtrans =nullderef -nullstate -onlytrans@*/
|
|
|
|
|
|
|
|
void
|
|
|
|
expr_print(FILE *f, expr *e)
|
|
|
|
{
|
|
|
|
static const char *regs[] = {"ax","cx","dx","bx","sp","bp","si","di"};
|
|
|
|
char opstr[3];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!e) {
|
|
|
|
fprintf(f, "(nil)");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (e->op) {
|
|
|
|
case EXPR_ADD:
|
|
|
|
strcpy(opstr, "+");
|
|
|
|
break;
|
|
|
|
case EXPR_SUB:
|
|
|
|
strcpy(opstr, "-");
|
|
|
|
break;
|
|
|
|
case EXPR_MUL:
|
|
|
|
strcpy(opstr, "*");
|
|
|
|
break;
|
|
|
|
case EXPR_DIV:
|
|
|
|
strcpy(opstr, "/");
|
|
|
|
break;
|
|
|
|
case EXPR_SIGNDIV:
|
|
|
|
strcpy(opstr, "//");
|
|
|
|
break;
|
|
|
|
case EXPR_MOD:
|
|
|
|
strcpy(opstr, "%");
|
|
|
|
break;
|
|
|
|
case EXPR_SIGNMOD:
|
|
|
|
strcpy(opstr, "%%");
|
|
|
|
break;
|
|
|
|
case EXPR_NEG:
|
|
|
|
fprintf(f, "-");
|
|
|
|
opstr[0] = 0;
|
|
|
|
break;
|
|
|
|
case EXPR_NOT:
|
|
|
|
fprintf(f, "~");
|
|
|
|
opstr[0] = 0;
|
|
|
|
break;
|
|
|
|
case EXPR_OR:
|
|
|
|
strcpy(opstr, "|");
|
|
|
|
break;
|
|
|
|
case EXPR_AND:
|
|
|
|
strcpy(opstr, "&");
|
|
|
|
break;
|
|
|
|
case EXPR_XOR:
|
|
|
|
strcpy(opstr, "^");
|
|
|
|
break;
|
|
|
|
case EXPR_SHL:
|
|
|
|
strcpy(opstr, "<<");
|
|
|
|
break;
|
|
|
|
case EXPR_SHR:
|
|
|
|
strcpy(opstr, ">>");
|
|
|
|
break;
|
|
|
|
case EXPR_LOR:
|
|
|
|
strcpy(opstr, "||");
|
|
|
|
break;
|
|
|
|
case EXPR_LAND:
|
|
|
|
strcpy(opstr, "&&");
|
|
|
|
break;
|
|
|
|
case EXPR_LNOT:
|
|
|
|
strcpy(opstr, "!");
|
|
|
|
break;
|
|
|
|
case EXPR_LT:
|
|
|
|
strcpy(opstr, "<");
|
|
|
|
break;
|
|
|
|
case EXPR_GT:
|
|
|
|
strcpy(opstr, ">");
|
|
|
|
break;
|
|
|
|
case EXPR_LE:
|
|
|
|
strcpy(opstr, "<=");
|
|
|
|
break;
|
|
|
|
case EXPR_GE:
|
|
|
|
strcpy(opstr, ">=");
|
|
|
|
break;
|
|
|
|
case EXPR_NE:
|
|
|
|
strcpy(opstr, "!=");
|
|
|
|
break;
|
|
|
|
case EXPR_EQ:
|
|
|
|
strcpy(opstr, "==");
|
|
|
|
break;
|
|
|
|
case EXPR_IDENT:
|
|
|
|
opstr[0] = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (i=0; i<e->numterms; i++) {
|
|
|
|
switch (e->terms[i].type) {
|
|
|
|
case EXPR_SYM:
|
|
|
|
fprintf(f, "%s", symrec_get_name(e->terms[i].data.sym));
|
|
|
|
break;
|
|
|
|
case EXPR_EXPR:
|
|
|
|
fprintf(f, "(");
|
|
|
|
expr_print(f, e->terms[i].data.expn);
|
|
|
|
fprintf(f, ")");
|
|
|
|
break;
|
|
|
|
case EXPR_INT:
|
|
|
|
intnum_print(f, e->terms[i].data.intn);
|
|
|
|
break;
|
|
|
|
case EXPR_FLOAT:
|
|
|
|
floatnum_print(f, e->terms[i].data.flt);
|
|
|
|
break;
|
|
|
|
case EXPR_REG:
|
|
|
|
if (e->terms[i].data.reg.size == 32)
|
|
|
|
fprintf(f, "e");
|
|
|
|
fprintf(f, "%s", regs[e->terms[i].data.reg.num&7]);
|
|
|
|
break;
|
|
|
|
case EXPR_NONE:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i < e->numterms-1)
|
|
|
|
fprintf(f, "%s", opstr);
|
|
|
|
}
|
|
|
|
}
|