You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
12 KiB
12 KiB
comments | description | keywords |
---|---|---|
true | Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration. | Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration |
Ultralytics HUB Inference API
The Ultralytics HUB Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally.
Watch: Ultralytics HUB Inference API Walkthrough
Python
To access the Ultralytics HUB Inference API using Python, use the following code:
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
cURL
To access the Ultralytics HUB Inference API using cURL, use the following code:
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
Arguments
See the table below for a full list of available inference arguments.
Argument | Default | Type | Description |
---|---|---|---|
image |
image |
Image file to be used for inference. | |
url |
str |
URL of the image if not passing a file. | |
size |
640 |
int |
Size of the input image, valid range is 32 - 1280 pixels. |
confidence |
0.25 |
float |
Confidence threshold for predictions, valid range 0.01 - 1.0 . |
iou |
0.45 |
float |
Intersection over Union (IoU) threshold, valid range 0.0 - 0.95 . |
Response
The Ultralytics HUB Inference API returns a JSON response.
Classification
!!! Example "Classification Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-cls.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92
}
]
}
```
Detection
!!! Example "Detection Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
width: 0.4893378019332886,
height: 0.7437513470649719,
xcenter: 0.4434437155723572,
ycenter: 0.5198975801467896
}
]
}
```
OBB
!!! Example "OBB Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-obb.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
obb: [
0.669310450553894,
0.6247171759605408,
0.9847468137741089,
...
]
}
]
}
```
Segmentation
!!! Example "Segmentation Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-seg.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
segment: [0.44140625, 0.15625, 0.439453125, ...]
}
]
}
```
Pose
!!! Example "Pose Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-pose.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "image=@/path/to/image.jpg" \
-F "size=640" \
-F "confidence=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"image": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
success: true,
message: "Inference complete.",
data: [
{
class: 0,
name: "person",
confidence: 0.92,
keypoints: [
0.5290805697441101,
0.20698919892311096,
1.0,
0.5263055562973022,
0.19584226608276367,
1.0,
0.5094948410987854,
0.19120082259178162,
1.0,
...
]
}
]
}
```