You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

226 lines
14 KiB

---
comments: true
description: Descubra cómo utilizar el modo predictivo de YOLOv8 para diversas tareas. Aprenda acerca de diferentes fuentes de inferencia como imágenes, videos y formatos de datos.
keywords: Ultralytics, YOLOv8, modo predictivo, fuentes de inferencia, tareas de predicción, modo de transmisión, procesamiento de imágenes, procesamiento de videos, aprendizaje automático, IA
---
# Predicción del Modelo con YOLO de Ultralytics
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ecosistema de YOLO de Ultralytics e integraciones">
## Introducción
En el mundo del aprendizaje automático y la visión por computadora, el proceso de dar sentido a los datos visuales se denomina 'inferencia' o 'predicción'. YOLOv8 de Ultralytics ofrece una característica poderosa conocida como **modo predictivo** que está diseñada para inferencias de alto rendimiento y en tiempo real en una amplia gama de fuentes de datos.
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
title="Reproductor de video de YouTube" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Ver:</strong> Cómo Extraer las Salidas del Modelo YOLOv8 de Ultralytics para Proyectos Personalizados.
</p>
## Aplicaciones en el Mundo Real
| Manufactura | Deportes | Seguridad |
|:-----------------------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------:|
| ![Detección de Repuestos de Vehículos](https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1) | ![Detección de Jugadores de Fútbol](https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442) | ![Detección de Caídas de Personas](https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43) |
| Detección de Repuestos de Vehículos | Detección de Jugadores de Fútbol | Detección de Caídas de Personas |
## ¿Por Qué Utilizar YOLO de Ultralytics para la Inferencia?
Estas son algunas razones para considerar el modo predictivo de YOLOv8 para sus necesidades de inferencia:
- **Versatilidad:** Capaz de realizar inferencias en imágenes, videos e incluso transmisiones en vivo.
- **Rendimiento:** Diseñado para procesamiento en tiempo real y de alta velocidad sin sacrificar precisión.
- **Facilidad de Uso:** Interfaces de Python y CLI intuitivas para una rápida implementación y pruebas.
- **Alta Personalización:** Diversos ajustes y parámetros para afinar el comportamiento de inferencia del modelo según sus requisitos específicos.
### Características Principales del Modo Predictivo
El modo predictivo de YOLOv8 está diseñado para ser robusto y versátil, y cuenta con:
- **Compatibilidad con Múltiples Fuentes de Datos:** Ya sea que sus datos estén en forma de imágenes individuales, una colección de imágenes, archivos de video o transmisiones de video en tiempo real, el modo predictivo le tiene cubierto.
- **Modo de Transmisión:** Utilice la función de transmisión para generar un generador eficiente de memoria de objetos `Results`. Active esto configurando `stream=True` en el método de llamada del predictor.
- **Procesamiento por Lotes:** La capacidad de procesar múltiples imágenes o fotogramas de video en un solo lote, acelerando aún más el tiempo de inferencia.
- **Amigable para la Integración:** Se integra fácilmente con pipelines de datos existentes y otros componentes de software, gracias a su API flexible.
Los modelos YOLO de Ultralytics devuelven ya sea una lista de objetos `Results` de Python, o un generador de objetos `Results` de Python eficiente en memoria cuando se pasa `stream=True` al modelo durante la inferencia:
!!! ejemplo "Predict"
=== "Devolver una lista con `stream=False`"
```python
from ultralytics import YOLO
# Cargar un modelo
model = YOLO('yolov8n.pt') # modelo YOLOv8n preentrenado
# Ejecutar inferencia por lotes en una lista de imágenes
results = model(['im1.jpg', 'im2.jpg']) # devuelve una lista de objetos Results
# Procesar lista de resultados
for result in results:
boxes = result.boxes # Objeto Boxes para salidas de bbox
masks = result.masks # Objeto Masks para salidas de máscaras de segmentación
keypoints = result.keypoints # Objeto Keypoints para salidas de postura
probs = result.probs # Objeto Probs para salidas de clasificación
```
=== "Devolver un generador con `stream=True`"
```python
from ultralytics import YOLO
# Cargar un modelo
model = YOLO('yolov8n.pt') # modelo YOLOv8n preentrenado
# Ejecutar inferencia por lotes en una lista de imágenes
results = model(['im1.jpg', 'im2.jpg'], stream=True) # devuelve un generador de objetos Results
# Procesar generador de resultados
for result in results:
boxes = result.boxes # Objeto Boxes para salidas de bbox
.masks = result.masks # Objeto Masks para salidas de máscaras de segmentación
keypoints = result.keypoints # Objeto Keypoints para salidas de postura
probs = result.probs # Objeto Probs para salidas de clasificación
```
## Fuentes de Inferencia
YOLOv8 puede procesar diferentes tipos de fuentes de entrada para la inferencia, como se muestra en la tabla a continuación. Las fuentes incluyen imágenes estáticas, transmisiones de video y varios formatos de datos. La tabla también indica si cada fuente se puede utilizar en modo de transmisión con el argumento `stream=True` ✅. El modo de transmisión es beneficioso para procesar videos o transmisiones en vivo ya que crea un generador de resultados en lugar de cargar todos los fotogramas en la memoria.
!!! consejo "Consejo"
Utilice `stream=True` para procesar videos largos o conjuntos de datos grandes para gestionar eficientemente la memoria. Cuando `stream=False`, los resultados de todos los fotogramas o puntos de datos se almacenan en la memoria, lo que puede aumentar rápidamente y causar errores de memoria insuficiente para entradas grandes. En contraste, `stream=True` utiliza un generador, que solo mantiene los resultados del fotograma o punto de datos actual en la memoria, reduciendo significativamente el consumo de memoria y previniendo problemas de falta de memoria.
| Fuente | Argumento | Tipo | Notas |
|---------------------|--------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| imagen | `'image.jpg'` | `str` o `Path` | Archivo único de imagen. |
| URL | `'https://ultralytics.com/images/bus.jpg'` | `str` | URL a una imagen. |
| captura de pantalla | `'screen'` | `str` | Captura una captura de pantalla. |
| PIL | `Image.open('im.jpg')` | `PIL.Image` | Formato HWC con canales RGB. |
| OpenCV | `cv2.imread('im.jpg')` | `np.ndarray` | Formato HWC con canales BGR `uint8 (0-255)`. |
| numpy | `np.zeros((640,1280,3))` | `np.ndarray` | Formato HWC con canales BGR `uint8 (0-255)`. |
| torch | `torch.zeros(16,3,320,640)` | `torch.Tensor` | Formato BCHW con canales RGB `float32 (0.0-1.0)`. |
| CSV | `'sources.csv'` | `str` o `Path` | Archivo CSV que contiene rutas a imágenes, videos o directorios. |
| video ✅ | `'video.mp4'` | `str` o `Path` | Archivo de video en formatos como MP4, AVI, etc. |
| directorio ✅ | `'path/'` | `str` o `Path` | Ruta a un directorio que contiene imágenes o videos. |
| glob ✅ | `'path/*.jpg'` | `str` | Patrón glob para coincidir con múltiples archivos. Utilice el carácter `*` como comodín. |
| YouTube ✅ | `'https://youtu.be/LNwODJXcvt4'` | `str` | URL a un video de YouTube. |
| transmisión ✅ | `'rtsp://example.com/media.mp4'` | `str` | URL para protocolos de transmisión como RTSP, RTMP, TCP o una dirección IP. |
| multi-transmisión ✅ | `'list.streams'` | `str` o `Path` | Archivo de texto `*.streams` con una URL de transmisión por fila, es decir, 8 transmisiones se ejecutarán con tamaño de lote 8. |
A continuación se muestran ejemplos de código para usar cada tipo de fuente:
!!! ejemplo "Fuentes de predicción"
=== "imagen"
Ejecute inferencia en un archivo de imagen.
```python
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Definir la ruta al archivo de imagen
source = 'ruta/a/imagen.jpg'
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "captura de pantalla"
Ejecute inferencia en el contenido actual de la pantalla como captura de pantalla.
```python
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Definir captura de pantalla actual como fuente
source = 'screen'
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "URL"
Ejecute inferencia en una imagen o video alojados remotamente a través de URL.
```python
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Definir URL remota de imagen o video
source = 'https://ultralytics.com/images/bus.jpg'
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "PIL"
Ejecute inferencia en una imagen abierta con la Biblioteca de Imágenes de Python (PIL).
```python
from PIL import Image
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Abrir una imagen usando PIL
source = Image.open('ruta/a/imagen.jpg')
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "OpenCV"
Ejecute inferencia en una imagen leída con OpenCV.
```python
import cv2
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Leer una imagen usando OpenCV
source = cv2.imread('ruta/a/imagen.jpg')
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "numpy"
Ejecute inferencia en una imagen representada como un array de numpy.
```python
import numpy as np
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Crear un array aleatorio de numpy con forma HWC (640, 640, 3) con valores en rango [0, 255] y tipo uint8
source = np.random.randint(low=0, high=255, size=(640, 640, 3), dtype='uint8')
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results
```
=== "torch"
Ejecute inferencia en una imagen representada como un tensor de PyTorch.
```python
import torch
from ultralytics import YOLO
# Cargar el modelo YOLOv8n preentrenado
model = YOLO('yolov8n.pt')
# Crear un tensor aleatorio de torch con forma BCHW (1, 3, 640, 640) con valores en rango [0, 1] y tipo float32
source = torch.rand(1, 3, 640, 640, dtype=torch.float32)
# Ejecutar inferencia en la fuente
results = model(source) # lista de objetos Results