You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
5.0 KiB
129 lines
5.0 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import subprocess |
|
|
|
import pytest |
|
from PIL import Image |
|
|
|
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE |
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS |
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks |
|
|
|
# Constants |
|
TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS] |
|
MODELS = [WEIGHTS_DIR / TASK2MODEL[task] for task in TASKS] |
|
|
|
|
|
def run(cmd): |
|
"""Execute a shell command using subprocess.""" |
|
subprocess.run(cmd.split(), check=True) |
|
|
|
|
|
def test_special_modes(): |
|
"""Test various special command-line modes for YOLO functionality.""" |
|
run("yolo help") |
|
run("yolo checks") |
|
run("yolo version") |
|
run("yolo settings reset") |
|
run("yolo cfg") |
|
|
|
|
|
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA) |
|
def test_train(task, model, data): |
|
"""Test YOLO training for different tasks, models, and datasets.""" |
|
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 cache=disk") |
|
|
|
|
|
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA) |
|
def test_val(task, model, data): |
|
"""Test YOLO validation process for specified task, model, and data using a shell command.""" |
|
run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json") |
|
|
|
|
|
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA) |
|
def test_predict(task, model, data): |
|
"""Test YOLO prediction on provided sample assets for specified task and model.""" |
|
run(f"yolo predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt") |
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
def test_export(model): |
|
"""Test exporting a YOLO model to TorchScript format.""" |
|
run(f"yolo export model={model} format=torchscript imgsz=32") |
|
|
|
|
|
def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"): |
|
"""Test the RTDETR functionality within Ultralytics for detection tasks using specified model and data.""" |
|
# Warning: must use imgsz=640 (note also add coma, spaces, fraction=0.25 args to test single-image training) |
|
run(f"yolo train {task} model={model} data={data} --imgsz= 160 epochs =1, cache = disk fraction=0.25") |
|
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt") |
|
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="MobileSAM with CLIP is not supported in Python 3.12") |
|
def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"): |
|
"""Test FastSAM model for segmenting objects in images using various prompts within Ultralytics.""" |
|
source = ASSETS / "bus.jpg" |
|
|
|
run(f"yolo segment val {task} model={model} data={data} imgsz=32") |
|
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt") |
|
|
|
from ultralytics import FastSAM |
|
from ultralytics.models.fastsam import FastSAMPrompt |
|
from ultralytics.models.sam import Predictor |
|
|
|
# Create a FastSAM model |
|
sam_model = FastSAM(model) # or FastSAM-x.pt |
|
|
|
# Run inference on an image |
|
for s in (source, Image.open(source)): |
|
everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9) |
|
|
|
# Remove small regions |
|
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) |
|
|
|
# Everything prompt |
|
prompt_process = FastSAMPrompt(s, everything_results, device="cpu") |
|
ann = prompt_process.everything_prompt() |
|
|
|
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2] |
|
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300]) |
|
|
|
# Text prompt |
|
ann = prompt_process.text_prompt(text="a photo of a dog") |
|
|
|
# Point prompt |
|
# Points default [[0,0]] [[x1,y1],[x2,y2]] |
|
# Point_label default [0] [1,0] 0:background, 1:foreground |
|
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1]) |
|
prompt_process.plot(annotations=ann, output="./") |
|
|
|
|
|
def test_mobilesam(): |
|
"""Test MobileSAM segmentation with point prompts using Ultralytics.""" |
|
from ultralytics import SAM |
|
|
|
# Load the model |
|
model = SAM(WEIGHTS_DIR / "mobile_sam.pt") |
|
|
|
# Source |
|
source = ASSETS / "zidane.jpg" |
|
|
|
# Predict a segment based on a point prompt |
|
model.predict(source, points=[900, 370], labels=[1]) |
|
|
|
# Predict a segment based on a box prompt |
|
model.predict(source, bboxes=[439, 437, 524, 709]) |
|
|
|
# Predict all |
|
# model(source) |
|
|
|
|
|
# Slow Tests ----------------------------------------------------------------------------------------------------------- |
|
@pytest.mark.slow |
|
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA) |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason="DDP is not available") |
|
def test_train_gpu(task, model, data): |
|
"""Test YOLO training on GPU(s) for various tasks and models.""" |
|
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0") # single GPU |
|
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0,1") # multi GPU
|
|
|