You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

591 lines
22 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import urllib
from copy import copy
from pathlib import Path
import cv2
import numpy as np
import pytest
import torch
import yaml
from PIL import Image
from tests import CFG, IS_TMP_WRITEABLE, MODEL, SOURCE, TMP
from ultralytics import RTDETR, YOLO
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
from ultralytics.data.build import load_inference_source
from ultralytics.utils import (
ASSETS,
DEFAULT_CFG,
DEFAULT_CFG_PATH,
LOGGER,
ONLINE,
ROOT,
WEIGHTS_DIR,
WINDOWS,
checks,
is_github_action_running,
)
from ultralytics.utils.downloads import download
from ultralytics.utils.torch_utils import TORCH_1_9
def test_model_forward():
"""Test the forward pass of the YOLO model."""
model = YOLO(CFG)
model(source=None, imgsz=32, augment=True) # also test no source and augment
def test_model_methods():
"""Test various methods and properties of the YOLO model to ensure correct functionality."""
model = YOLO(MODEL)
# Model methods
model.info(verbose=True, detailed=True)
model = model.reset_weights()
model = model.load(MODEL)
model.to("cpu")
model.fuse()
model.clear_callback("on_train_start")
model.reset_callbacks()
# Model properties
_ = model.names
_ = model.device
_ = model.transforms
_ = model.task_map
def test_model_profile():
"""Test profiling of the YOLO model with `profile=True` to assess performance and resource usage."""
from ultralytics.nn.tasks import DetectionModel
model = DetectionModel() # build model
im = torch.randn(1, 3, 64, 64) # requires min imgsz=64
_ = model.predict(im, profile=True)
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
def test_predict_txt():
"""Tests YOLO predictions with file, directory, and pattern sources listed in a text file."""
txt_file = TMP / "sources.txt"
with open(txt_file, "w") as f:
for x in [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]:
f.write(f"{x}\n")
_ = YOLO(MODEL)(source=txt_file, imgsz=32)
@pytest.mark.parametrize("model_name", MODELS)
def test_predict_img(model_name):
"""Test YOLO model predictions on various image input types and sources, including online images."""
model = YOLO(WEIGHTS_DIR / model_name)
im = cv2.imread(str(SOURCE)) # uint8 numpy array
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray
assert len(model(torch.rand((2, 3, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream
assert len(model(torch.zeros(320, 640, 3).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy
batch = [
str(SOURCE), # filename
Path(SOURCE), # Path
"https://github.com/ultralytics/assets/releases/download/v0.0.0/zidane.jpg" if ONLINE else SOURCE, # URI
cv2.imread(str(SOURCE)), # OpenCV
Image.open(SOURCE), # PIL
np.zeros((320, 640, 3), dtype=np.uint8), # numpy
]
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch
@pytest.mark.parametrize("model", MODELS)
def test_predict_visualize(model):
"""Test model prediction methods with 'visualize=True' to generate and display prediction visualizations."""
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True)
def test_predict_grey_and_4ch():
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images with various filenames."""
im = Image.open(SOURCE)
directory = TMP / "im4"
directory.mkdir(parents=True, exist_ok=True)
source_greyscale = directory / "greyscale.jpg"
source_rgba = directory / "4ch.png"
source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg"
source_spaces = directory / "image with spaces.jpg"
im.convert("L").save(source_greyscale) # greyscale
im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha
im.save(source_non_utf) # non-UTF characters in filename
im.save(source_spaces) # spaces in filename
# Inference
model = YOLO(MODEL)
for f in source_rgba, source_greyscale, source_non_utf, source_spaces:
for source in Image.open(f), cv2.imread(str(f)), f:
results = model(source, save=True, verbose=True, imgsz=32)
assert len(results) == 1 # verify that an image was run
f.unlink() # cleanup
@pytest.mark.slow
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
@pytest.mark.skipif(is_github_action_running(), reason="No auth https://github.com/JuanBindez/pytubefix/issues/166")
def test_youtube():
"""Test YOLO model on a YouTube video stream, handling potential network-related errors."""
model = YOLO(MODEL)
try:
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True)
# Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests'
except (urllib.error.HTTPError, ConnectionError) as e:
LOGGER.warning(f"WARNING: YouTube Test Error: {e}")
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
def test_track_stream():
"""
Tests streaming tracking on a short 10 frame video using ByteTrack tracker and different GMC methods.
Note imgsz=160 required for tracking for higher confidence and better matches.
"""
video_url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/decelera_portrait_min.mov"
model = YOLO(MODEL)
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also
# Test Global Motion Compensation (GMC) methods
for gmc in "orb", "sift", "ecc":
with open(ROOT / "cfg/trackers/botsort.yaml", encoding="utf-8") as f:
data = yaml.safe_load(f)
tracker = TMP / f"botsort-{gmc}.yaml"
data["gmc_method"] = gmc
with open(tracker, "w", encoding="utf-8") as f:
yaml.safe_dump(data, f)
model.track(video_url, imgsz=160, tracker=tracker)
def test_val():
"""Test the validation mode of the YOLO model."""
YOLO(MODEL).val(data="coco8.yaml", imgsz=32, save_hybrid=True)
def test_train_scratch():
"""Test training the YOLO model from scratch using the provided configuration."""
model = YOLO(CFG)
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model")
model(SOURCE)
def test_train_pretrained():
"""Test training of the YOLO model starting from a pre-trained checkpoint."""
model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt")
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0)
model(SOURCE)
def test_all_model_yamls():
"""Test YOLO model creation for all available YAML configurations in the `cfg/models` directory."""
for m in (ROOT / "cfg" / "models").rglob("*.yaml"):
if "rtdetr" in m.name:
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first'
_ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640
else:
YOLO(m.name)
@pytest.mark.skipif(WINDOWS, reason="Windows slow CI export bug https://github.com/ultralytics/ultralytics/pull/16003")
def test_workflow():
"""Test the complete workflow including training, validation, prediction, and exporting."""
model = YOLO(MODEL)
model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD")
model.val(imgsz=32)
model.predict(SOURCE, imgsz=32)
model.export(format="torchscript") # WARNING: Windows slow CI export bug
def test_predict_callback_and_setup():
"""Test callback functionality during YOLO prediction setup and execution."""
def on_predict_batch_end(predictor):
"""Callback function that handles operations at the end of a prediction batch."""
path, im0s, _ = predictor.batch
im0s = im0s if isinstance(im0s, list) else [im0s]
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size]
model = YOLO(MODEL)
model.add_callback("on_predict_batch_end", on_predict_batch_end)
dataset = load_inference_source(source=SOURCE)
bs = dataset.bs # noqa access predictor properties
results = model.predict(dataset, stream=True, imgsz=160) # source already setup
for r, im0, bs in results:
print("test_callback", im0.shape)
print("test_callback", bs)
boxes = r.boxes # Boxes object for bbox outputs
print(boxes)
@pytest.mark.parametrize("model", MODELS)
def test_results(model):
"""Ensure YOLO model predictions can be processed and printed in various formats."""
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160)
for r in results:
r = r.cpu().numpy()
print(r, len(r), r.path) # print numpy attributes
r = r.to(device="cpu", dtype=torch.float32)
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True)
r.save_crop(save_dir=TMP / "runs/tests/crops/")
r.tojson(normalize=True)
r.plot(pil=True)
r.plot(conf=True, boxes=True)
print(r, len(r), r.path) # print after methods
def test_labels_and_crops():
"""Test output from prediction args for saving YOLO detection labels and crops; ensures accurate saving."""
imgs = [SOURCE, ASSETS / "zidane.jpg"]
results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True)
save_path = Path(results[0].save_dir)
for r in results:
im_name = Path(r.path).stem
cls_idxs = r.boxes.cls.int().tolist()
# Check correct detections
assert cls_idxs == ([0, 0, 5, 0, 7] if r.path.endswith("bus.jpg") else [0, 0]) # bus.jpg and zidane.jpg classes
# Check label path
labels = save_path / f"labels/{im_name}.txt"
assert labels.exists()
# Check detections match label count
assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line])
# Check crops path and files
crop_dirs = list((save_path / "crops").iterdir())
crop_files = [f for p in crop_dirs for f in p.glob("*")]
# Crop directories match detections
assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs)
# Same number of crops as detections
assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data)
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
def test_data_utils():
"""Test utility functions in ultralytics/data/utils.py, including dataset stats and auto-splitting."""
from ultralytics.data.utils import HUBDatasetStats, autosplit
from ultralytics.utils.downloads import zip_directory
# from ultralytics.utils.files import WorkingDirectory
# with WorkingDirectory(ROOT.parent / 'tests'):
for task in TASKS:
file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip
download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP)
stats = HUBDatasetStats(TMP / file, task=task)
stats.get_json(save=True)
stats.process_images()
autosplit(TMP / "coco8")
zip_directory(TMP / "coco8/images/val") # zip
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
def test_data_converter():
"""Test dataset conversion functions from COCO to YOLO format and class mappings."""
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco
file = "instances_val2017.json"
download(f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{file}", dir=TMP)
convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True)
coco80_to_coco91_class()
def test_data_annotator():
"""Automatically annotate data using specified detection and segmentation models."""
from ultralytics.data.annotator import auto_annotate
auto_annotate(
ASSETS,
det_model=WEIGHTS_DIR / "yolov8n.pt",
sam_model=WEIGHTS_DIR / "mobile_sam.pt",
output_dir=TMP / "auto_annotate_labels",
)
def test_events():
"""Test event sending functionality."""
from ultralytics.hub.utils import Events
events = Events()
events.enabled = True
cfg = copy(DEFAULT_CFG) # does not require deepcopy
cfg.mode = "test"
events(cfg)
def test_cfg_init():
"""Test configuration initialization utilities from the 'ultralytics.cfg' module."""
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value
with contextlib.suppress(SyntaxError):
check_dict_alignment({"a": 1}, {"b": 2})
copy_default_cfg()
(Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
[smart_value(x) for x in ["none", "true", "false"]]
def test_utils_init():
"""Test initialization utilities in the Ultralytics library."""
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running
get_ubuntu_version()
is_github_action_running()
get_git_origin_url()
get_git_branch()
def test_utils_checks():
"""Test various utility checks for filenames, git status, requirements, image sizes, and versions."""
checks.check_yolov5u_filename("yolov5n.pt")
checks.git_describe(ROOT)
checks.check_requirements() # check requirements.txt
checks.check_imgsz([600, 600], max_dim=1)
checks.check_imshow(warn=True)
checks.check_version("ultralytics", "8.0.0")
checks.print_args()
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)")
def test_utils_benchmarks():
"""Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'."""
from ultralytics.utils.benchmarks import ProfileModels
ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
def test_utils_torchutils():
"""Test Torch utility functions including profiling and FLOP calculations."""
from ultralytics.nn.modules.conv import Conv
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync
x = torch.randn(1, 64, 20, 20)
m = Conv(64, 64, k=1, s=2)
profile(x, [m], n=3)
get_flops_with_torch_profiler(m)
time_sync()
@pytest.mark.slow
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
def test_utils_downloads():
"""Test file download utilities from ultralytics.utils.downloads."""
from ultralytics.utils.downloads import get_google_drive_file_info
get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link")
def test_utils_ops():
"""Test utility operations functions for coordinate transformation and normalization."""
from ultralytics.utils.ops import (
ltwh2xywh,
ltwh2xyxy,
make_divisible,
xywh2ltwh,
xywh2xyxy,
xywhn2xyxy,
xywhr2xyxyxyxy,
xyxy2ltwh,
xyxy2xywh,
xyxy2xywhn,
xyxyxyxy2xywhr,
)
make_divisible(17, torch.tensor([8]))
boxes = torch.rand(10, 4) # xywh
torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes)))
torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes)))
torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes)))
torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes)))
boxes = torch.rand(10, 5) # xywhr for OBB
boxes[:, 4] = torch.randn(10) * 30
torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3)
def test_utils_files():
"""Test file handling utilities including file age, date, and paths with spaces."""
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path
file_age(SOURCE)
file_date(SOURCE)
get_latest_run(ROOT / "runs")
path = TMP / "path/with spaces"
path.mkdir(parents=True, exist_ok=True)
with spaces_in_path(path) as new_path:
print(new_path)
@pytest.mark.slow
def test_utils_patches_torch_save():
"""Test torch_save backoff when _torch_save raises RuntimeError to ensure robustness."""
from unittest.mock import MagicMock, patch
from ultralytics.utils.patches import torch_save
mock = MagicMock(side_effect=RuntimeError)
with patch("ultralytics.utils.patches._torch_save", new=mock):
with pytest.raises(RuntimeError):
torch_save(torch.zeros(1), TMP / "test.pt")
assert mock.call_count == 4, "torch_save was not attempted the expected number of times"
def test_nn_modules_conv():
"""Test Convolutional Neural Network modules including CBAM, Conv2, and ConvTranspose."""
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus
c1, c2 = 8, 16 # input and output channels
x = torch.zeros(4, c1, 10, 10) # BCHW
# Run all modules not otherwise covered in tests
DWConvTranspose2d(c1, c2)(x)
ConvTranspose(c1, c2)(x)
Focus(c1, c2)(x)
CBAM(c1)(x)
# Fuse ops
m = Conv2(c1, c2)
m.fuse_convs()
m(x)
def test_nn_modules_block():
"""Test various blocks in neural network modules including C1, C3TR, BottleneckCSP, C3Ghost, and C3x."""
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x
c1, c2 = 8, 16 # input and output channels
x = torch.zeros(4, c1, 10, 10) # BCHW
# Run all modules not otherwise covered in tests
C1(c1, c2)(x)
C3x(c1, c2)(x)
C3TR(c1, c2)(x)
C3Ghost(c1, c2)(x)
BottleneckCSP(c1, c2)(x)
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
def test_hub():
"""Test Ultralytics HUB functionalities (e.g. export formats, logout)."""
from ultralytics.hub import export_fmts_hub, logout
from ultralytics.hub.utils import smart_request
export_fmts_hub()
logout()
smart_request("GET", "https://github.com", progress=True)
@pytest.fixture
def image():
"""Load and return an image from a predefined source using OpenCV."""
return cv2.imread(str(SOURCE))
@pytest.mark.parametrize(
"auto_augment, erasing, force_color_jitter",
[
(None, 0.0, False),
("randaugment", 0.5, True),
("augmix", 0.2, False),
("autoaugment", 0.0, True),
],
)
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter):
"""Tests classification transforms during training with various augmentations to ensure proper functionality."""
from ultralytics.data.augment import classify_augmentations
transform = classify_augmentations(
size=224,
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
hflip=0.5,
vflip=0.5,
auto_augment=auto_augment,
hsv_h=0.015,
hsv_s=0.4,
hsv_v=0.4,
force_color_jitter=force_color_jitter,
erasing=erasing,
)
transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
assert transformed_image.shape == (3, 224, 224)
assert torch.is_tensor(transformed_image)
assert transformed_image.dtype == torch.float32
@pytest.mark.slow
@pytest.mark.skipif(not ONLINE, reason="environment is offline")
def test_model_tune():
"""Tune YOLO model for performance improvement."""
YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu")
def test_model_embeddings():
"""Test YOLO model embeddings."""
model_detect = YOLO(MODEL)
model_segment = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt")
for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2
assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch)
assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch)
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12")
def test_yolo_world():
"""Tests YOLO world models with CLIP support, including detection and training scenarios."""
model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet
model.set_classes(["tree", "window"])
model(SOURCE, conf=0.01)
model = YOLO("yolov8s-worldv2.pt") # no YOLOv8n-world model yet
# Training from a pretrained model. Eval is included at the final stage of training.
# Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model
model.train(
data="dota8.yaml",
epochs=1,
imgsz=32,
cache="disk",
close_mosaic=1,
)
# test WorWorldTrainerFromScratch
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
model = YOLO("yolov8s-worldv2.yaml") # no YOLOv8n-world model yet
model.train(
data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}},
epochs=1,
imgsz=32,
cache="disk",
close_mosaic=1,
trainer=WorldTrainerFromScratch,
)
def test_yolov10():
"""Test YOLOv10 model training, validation, and prediction steps with minimal configurations."""
model = YOLO("yolov10n.yaml")
# train/val/predict
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk")
model.val(data="coco8.yaml", imgsz=32)
model.predict(imgsz=32, save_txt=True, save_crop=True, augment=True)
model(SOURCE)