You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
458 lines
14 KiB
458 lines
14 KiB
--- |
|
comments: true |
|
description: Access object detection capabilities of YOLOv8 via our RESTful API. Learn how to use the YOLO Inference API with Python or CLI for swift object detection. |
|
keywords: Ultralytics, YOLOv8, Inference API, object detection, RESTful API, Python, CLI, Quickstart |
|
--- |
|
|
|
# YOLO Inference API |
|
|
|
The YOLO Inference API allows you to access the YOLOv8 object detection capabilities via a RESTful API. This enables you to run object detection on images without the need to install and set up the YOLOv8 environment locally. |
|
|
|
![Inference API Screenshot](https://github.com/ultralytics/ultralytics/assets/26833433/c0109ec0-7bb0-46e1-b0d2-bae687960a01) |
|
Screenshot of the Inference API section in the trained model Preview tab. |
|
|
|
## API URL |
|
|
|
The API URL is the address used to access the YOLO Inference API. In this case, the base URL is: |
|
|
|
``` |
|
https://api.ultralytics.com/v1/predict |
|
``` |
|
|
|
## Example Usage in Python |
|
|
|
To access the YOLO Inference API with the specified model and API key using Python, you can use the following code: |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
In this example, replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `path/to/image.jpg` with the path to the image you want to analyze. |
|
|
|
## Example Usage with CLI |
|
|
|
You can use the YOLO Inference API with the command-line interface (CLI) by utilizing the `curl` command. Replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `image.jpg` with the path to the image you want to analyze: |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
## Passing Arguments |
|
|
|
This command sends a POST request to the YOLO Inference API with the specified `MODEL_ID` in the URL and the `API_KEY` in the request `headers`, along with the image file specified by `@path/to/image.jpg`. |
|
|
|
Here's an example of passing the `size`, `confidence`, and `iou` arguments via the API URL using the `requests` library in Python: |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
In this example, the `data` dictionary contains the query arguments `size`, `confidence`, and `iou`, which tells the API to run inference at image size 640 with confidence and IoU thresholds of 0.25 and 0.45. |
|
|
|
This will send the query parameters along with the file in the POST request. See the table below for a full list of available inference arguments. |
|
|
|
| Inference Argument | Default | Type | Notes | |
|
|--------------------|---------|---------|------------------------------------------------| |
|
| `size` | `640` | `int` | valid range is `32` - `1280` pixels | |
|
| `confidence` | `0.25` | `float` | valid range is `0.01` - `1.0` | |
|
| `iou` | `0.45` | `float` | valid range is `0.0` - `0.95` | |
|
| `url` | `''` | `str` | optional image URL if not image file is passed | |
|
| `normalize` | `False` | `bool` | | |
|
|
|
## Return JSON format |
|
|
|
The YOLO Inference API returns a JSON list with the detection results. The format of the JSON list will be the same as the one produced locally by the `results[0].tojson()` command. |
|
|
|
The JSON list contains information about the detected objects, their coordinates, classes, and confidence scores. |
|
|
|
### Detect Model Format |
|
|
|
YOLO detection models, such as `yolov8n.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. |
|
|
|
!!! example "Detect Model JSON Response" |
|
|
|
=== "Local" |
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO('yolov8n.pt') |
|
|
|
# Run inference |
|
results = model('image.jpg') |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "CLI API" |
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python API" |
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "JSON Response" |
|
```json |
|
{ |
|
"success": True, |
|
"message": "Inference complete.", |
|
"data": [ |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.8359682559967041, |
|
"box": { |
|
"x1": 0.08974208831787109, |
|
"y1": 0.27418340047200523, |
|
"x2": 0.8706787109375, |
|
"y2": 0.9887352837456598 |
|
} |
|
}, |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.8189555406570435, |
|
"box": { |
|
"x1": 0.5847355842590332, |
|
"y1": 0.05813225640190972, |
|
"x2": 0.8930277824401855, |
|
"y2": 0.9903111775716146 |
|
} |
|
}, |
|
{ |
|
"name": "tie", |
|
"class": 27, |
|
"confidence": 0.2909725308418274, |
|
"box": { |
|
"x1": 0.3433395862579346, |
|
"y1": 0.6070465511745877, |
|
"x2": 0.40964522361755373, |
|
"y2": 0.9849439832899306 |
|
} |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### Segment Model Format |
|
|
|
YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. |
|
|
|
!!! example "Segment Model JSON Response" |
|
|
|
=== "Local" |
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO('yolov8n-seg.pt') |
|
|
|
# Run inference |
|
results = model('image.jpg') |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "CLI API" |
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python API" |
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "JSON Response" |
|
Note `segments` `x` and `y` lengths may vary from one object to another. Larger or more complex objects may have more segment points. |
|
```json |
|
{ |
|
"success": True, |
|
"message": "Inference complete.", |
|
"data": [ |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.856913149356842, |
|
"box": { |
|
"x1": 0.1064866065979004, |
|
"y1": 0.2798851860894097, |
|
"x2": 0.8738358497619629, |
|
"y2": 0.9894873725043403 |
|
}, |
|
"segments": { |
|
"x": [ |
|
0.421875, |
|
0.4203124940395355, |
|
0.41718751192092896 |
|
... |
|
], |
|
"y": [ |
|
0.2888889014720917, |
|
0.2916666567325592, |
|
0.2916666567325592 |
|
... |
|
] |
|
} |
|
}, |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.8512625694274902, |
|
"box": { |
|
"x1": 0.5757311820983887, |
|
"y1": 0.053943040635850696, |
|
"x2": 0.8960096359252929, |
|
"y2": 0.985154045952691 |
|
}, |
|
"segments": { |
|
"x": [ |
|
0.7515624761581421, |
|
0.75, |
|
0.7437499761581421 |
|
... |
|
], |
|
"y": [ |
|
0.0555555559694767, |
|
0.05833333358168602, |
|
0.05833333358168602 |
|
... |
|
] |
|
} |
|
}, |
|
{ |
|
"name": "tie", |
|
"class": 27, |
|
"confidence": 0.6485961675643921, |
|
"box": { |
|
"x1": 0.33911995887756347, |
|
"y1": 0.6057066175672743, |
|
"x2": 0.4081430912017822, |
|
"y2": 0.9916408962673611 |
|
}, |
|
"segments": { |
|
"x": [ |
|
0.37187498807907104, |
|
0.37031251192092896, |
|
0.3687500059604645 |
|
... |
|
], |
|
"y": [ |
|
0.6111111044883728, |
|
0.6138888597488403, |
|
0.6138888597488403 |
|
... |
|
] |
|
} |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### Pose Model Format |
|
|
|
YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. |
|
|
|
!!! example "Pose Model JSON Response" |
|
|
|
=== "Local" |
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO('yolov8n-seg.pt') |
|
|
|
# Run inference |
|
results = model('image.jpg') |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "CLI API" |
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python API" |
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "JSON Response" |
|
Note COCO-keypoints pretrained models will have 17 human keypoints. The `visible` part of the keypoints indicates whether a keypoint is visible or obscured. Obscured keypoints may be outside the image or may not be visible, i.e. a person's eyes facing away from the camera. |
|
```json |
|
{ |
|
"success": True, |
|
"message": "Inference complete.", |
|
"data": [ |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.8439509868621826, |
|
"box": { |
|
"x1": 0.1125, |
|
"y1": 0.28194444444444444, |
|
"x2": 0.7953125, |
|
"y2": 0.9902777777777778 |
|
}, |
|
"keypoints": { |
|
"x": [ |
|
0.5058594942092896, |
|
0.5103894472122192, |
|
0.4920862317085266 |
|
... |
|
], |
|
"y": [ |
|
0.48964157700538635, |
|
0.4643048942089081, |
|
0.4465252459049225 |
|
... |
|
], |
|
"visible": [ |
|
0.8726999163627625, |
|
0.653947651386261, |
|
0.9130823612213135 |
|
... |
|
] |
|
} |
|
}, |
|
{ |
|
"name": "person", |
|
"class": 0, |
|
"confidence": 0.7474289536476135, |
|
"box": { |
|
"x1": 0.58125, |
|
"y1": 0.0625, |
|
"x2": 0.8859375, |
|
"y2": 0.9888888888888889 |
|
}, |
|
"keypoints": { |
|
"x": [ |
|
0.778544008731842, |
|
0.7976160049438477, |
|
0.7530890107154846 |
|
... |
|
], |
|
"y": [ |
|
0.27595141530036926, |
|
0.2378823608160019, |
|
0.23644638061523438 |
|
... |
|
], |
|
"visible": [ |
|
0.8900790810585022, |
|
0.789978563785553, |
|
0.8974530100822449 |
|
... |
|
] |
|
} |
|
} |
|
] |
|
} |
|
``` |