You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
7.4 KiB
106 lines
7.4 KiB
--- |
|
comments: true |
|
description: Learn how to profile speed and accuracy of YOLOv8 across various export formats; get insights on mAP50-95, accuracy_top5 metrics, and more. |
|
keywords: Ultralytics, YOLOv8, benchmarking, speed profiling, accuracy profiling, mAP50-95, accuracy_top5, ONNX, OpenVINO, TensorRT, YOLO export formats |
|
--- |
|
|
|
# Model Benchmarking with Ultralytics YOLO |
|
|
|
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics YOLO ecosystem and integrations"> |
|
|
|
## Introduction |
|
|
|
Once your model is trained and validated, the next logical step is to evaluate its performance in various real-world scenarios. Benchmark mode in Ultralytics YOLOv8 serves this purpose by providing a robust framework for assessing the speed and accuracy of your model across a range of export formats. |
|
|
|
<p align="center"> |
|
<br> |
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/j8uQc0qB91s?start=105" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Watch:</strong> Ultralytics Modes Tutorial: Benchmark |
|
</p> |
|
|
|
## Why Is Benchmarking Crucial? |
|
|
|
- **Informed Decisions:** Gain insights into the trade-offs between speed and accuracy. |
|
- **Resource Allocation:** Understand how different export formats perform on different hardware. |
|
- **Optimization:** Learn which export format offers the best performance for your specific use case. |
|
- **Cost Efficiency:** Make more efficient use of hardware resources based on benchmark results. |
|
|
|
### Key Metrics in Benchmark Mode |
|
|
|
- **mAP50-95:** For object detection, segmentation, and pose estimation. |
|
- **accuracy_top5:** For image classification. |
|
- **Inference Time:** Time taken for each image in milliseconds. |
|
|
|
### Supported Export Formats |
|
|
|
- **ONNX:** For optimal CPU performance |
|
- **TensorRT:** For maximal GPU efficiency |
|
- **OpenVINO:** For Intel hardware optimization |
|
- **CoreML, TensorFlow SavedModel, and More:** For diverse deployment needs. |
|
|
|
!!! Tip "Tip" |
|
|
|
* Export to ONNX or OpenVINO for up to 3x CPU speedup. |
|
* Export to TensorRT for up to 5x GPU speedup. |
|
|
|
## Usage Examples |
|
|
|
Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT etc. See Arguments section below for a full list of export arguments. |
|
|
|
!!! Example |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics.utils.benchmarks import benchmark |
|
|
|
# Benchmark on GPU |
|
benchmark(model="yolov8n.pt", data="coco8.yaml", imgsz=640, half=False, device=0) |
|
``` |
|
|
|
=== "CLI" |
|
|
|
```bash |
|
yolo benchmark model=yolov8n.pt data='coco8.yaml' imgsz=640 half=False device=0 |
|
``` |
|
|
|
## Arguments |
|
|
|
Arguments such as `model`, `data`, `imgsz`, `half`, `device`, and `verbose` provide users with the flexibility to fine-tune the benchmarks to their specific needs and compare the performance of different export formats with ease. |
|
|
|
| Key | Default Value | Description | |
|
|-----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| `model` | `None` | Specifies the path to the model file. Accepts both `.pt` and `.yaml` formats, e.g., `"yolov8n.pt"` for pre-trained models or configuration files. | |
|
| `data` | `None` | Path to a YAML file defining the dataset for benchmarking, typically including paths and settings for validation data. Example: `"coco8.yaml"`. | |
|
| `imgsz` | `640` | The input image size for the model. Can be a single integer for square images or a tuple `(width, height)` for non-square, e.g., `(640, 480)`. | |
|
| `half` | `False` | Enables FP16 (half-precision) inference, reducing memory usage and possibly increasing speed on compatible hardware. Use `half=True` to enable. | |
|
| `int8` | `False` | Activates INT8 quantization for further optimized performance on supported devices, especially useful for edge devices. Set `int8=True` to use. | |
|
| `device` | `None` | Defines the computation device(s) for benchmarking, such as `"cpu"`, `"cuda:0"`, or a list of devices like `"cuda:0,1"` for multi-GPU setups. | |
|
| `verbose` | `False` | Controls the level of detail in logging output. A boolean value; set `verbose=True` for detailed logs or a float for thresholding errors. | |
|
|
|
## Export Formats |
|
|
|
Benchmarks will attempt to run automatically on all possible export formats below. |
|
|
|
| Format | `format` Argument | Model | Metadata | Arguments | |
|
|---------------------------------------------------|-------------------|---------------------------|----------|----------------------------------------------------------------------| |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - | |
|
| [TorchScript](../integrations/torchscript.md) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize`, `batch` | |
|
| [ONNX](../integrations/onnx.md) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `batch` | |
|
| [OpenVINO](../integrations/openvino.md) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [TensorRT](../integrations/tensorrt.md) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `batch` | |
|
| [CoreML](../integrations/coreml.md) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`, `batch` | |
|
| [TF SavedModel](../integrations/tf-savedmodel.md) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras`, `int8`, `batch` | |
|
| [TF GraphDef](../integrations/tf-graphdef.md) | `pb` | `yolov8n.pb` | ❌ | `imgsz`, `batch` | |
|
| [TF Lite](../integrations/tflite.md) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [TF Edge TPU](../integrations/edge-tpu.md) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz`, `batch` | |
|
| [TF.js](../integrations/tfjs.md) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [PaddlePaddle](../integrations/paddlepaddle.md) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz`, `batch` | |
|
| [NCNN](../integrations/ncnn.md) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half`, `batch` | |
|
|
|
See full `export` details in the [Export](../modes/export.md) page.
|
|
|