You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
3.7 KiB
113 lines
3.7 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import pytest |
|
import torch |
|
|
|
from ultralytics import YOLO |
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks |
|
|
|
CUDA_IS_AVAILABLE = checks.cuda_is_available() |
|
CUDA_DEVICE_COUNT = checks.cuda_device_count() |
|
|
|
MODEL = WEIGHTS_DIR / "path with spaces" / "yolov8n.pt" # test spaces in path |
|
DATA = "coco8.yaml" |
|
BUS = ASSETS / "bus.jpg" |
|
|
|
|
|
def test_checks(): |
|
"""Validate CUDA settings against torch CUDA functions.""" |
|
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE |
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_export_engine(): |
|
"""Test exporting the YOLO model to NVIDIA TensorRT format.""" |
|
f = YOLO(MODEL).export(format="engine", device=0) |
|
YOLO(f)(BUS, device=0) |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_train(): |
|
"""Test model training on a minimal dataset.""" |
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] |
|
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64 |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_predict_multiple_devices(): |
|
"""Validate model prediction on multiple devices.""" |
|
model = YOLO("yolov8n.pt") |
|
model = model.cpu() |
|
assert str(model.device) == "cpu" |
|
_ = model(BUS) # CPU inference |
|
assert str(model.device) == "cpu" |
|
|
|
model = model.to("cuda:0") |
|
assert str(model.device) == "cuda:0" |
|
_ = model(BUS) # CUDA inference |
|
assert str(model.device) == "cuda:0" |
|
|
|
model = model.cpu() |
|
assert str(model.device) == "cpu" |
|
_ = model(BUS) # CPU inference |
|
assert str(model.device) == "cpu" |
|
|
|
model = model.cuda() |
|
assert str(model.device) == "cuda:0" |
|
_ = model(BUS) # CUDA inference |
|
assert str(model.device) == "cuda:0" |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_autobatch(): |
|
"""Check batch size for YOLO model using autobatch.""" |
|
from ultralytics.utils.autobatch import check_train_batch_size |
|
|
|
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_utils_benchmarks(): |
|
"""Profile YOLO models for performance benchmarks.""" |
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
# Pre-export a dynamic engine model to use dynamic inference |
|
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1) |
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_predict_sam(): |
|
"""Test SAM model prediction with various prompts.""" |
|
from ultralytics import SAM |
|
from ultralytics.models.sam import Predictor as SAMPredictor |
|
|
|
# Load a model |
|
model = SAM(WEIGHTS_DIR / "sam_b.pt") |
|
|
|
# Display model information (optional) |
|
model.info() |
|
|
|
# Run inference |
|
model(BUS, device=0) |
|
|
|
# Run inference with bboxes prompt |
|
model(BUS, bboxes=[439, 437, 524, 709], device=0) |
|
|
|
# Run inference with points prompt |
|
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0) |
|
|
|
# Create SAMPredictor |
|
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt") |
|
predictor = SAMPredictor(overrides=overrides) |
|
|
|
# Set image |
|
predictor.set_image(ASSETS / "zidane.jpg") # set with image file |
|
# predictor(bboxes=[439, 437, 524, 709]) |
|
# predictor(points=[900, 370], labels=[1]) |
|
|
|
# Reset image |
|
predictor.reset_image()
|
|
|