You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

5.2 KiB

Argument Type Default Description
source str 'ultralytics/assets' Specifies the data source for inference. Can be an image path, video file, directory, URL, or device ID for live feeds. Supports a wide range of formats and sources, enabling flexible application across different types of input.
conf float 0.25 Sets the minimum confidence threshold for detections. Objects detected with confidence below this threshold will be disregarded. Adjusting this value can help reduce false positives.
iou float 0.7 Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Lower values result in fewer detections by eliminating overlapping boxes, useful for reducing duplicates.
imgsz int or tuple 640 Defines the image size for inference. Can be a single integer 640 for square resizing or a (height, width) tuple. Proper sizing can improve detection accuracy and processing speed.
half bool False Enables half-precision (FP16) inference, which can speed up model inference on supported GPUs with minimal impact on accuracy.
device str None Specifies the device for inference (e.g., cpu, cuda:0 or 0). Allows users to select between CPU, a specific GPU, or other compute devices for model execution.
max_det int 300 Maximum number of detections allowed per image. Limits the total number of objects the model can detect in a single inference, preventing excessive outputs in dense scenes.
vid_stride int 1 Frame stride for video inputs. Allows skipping frames in videos to speed up processing at the cost of temporal resolution. A value of 1 processes every frame, higher values skip frames.
stream_buffer bool False Determines if all frames should be buffered when processing video streams (True), or if the model should return the most recent frame (False). Useful for real-time applications.
visualize bool False Activates visualization of model features during inference, providing insights into what the model is "seeing". Useful for debugging and model interpretation.
augment bool False Enables test-time augmentation (TTA) for predictions, potentially improving detection robustness at the cost of inference speed.
agnostic_nms bool False Enables class-agnostic Non-Maximum Suppression (NMS), which merges overlapping boxes of different classes. Useful in multi-class detection scenarios where class overlap is common.
classes list[int] None Filters predictions to a set of class IDs. Only detections belonging to the specified classes will be returned. Useful for focusing on relevant objects in multi-class detection tasks.
retina_masks bool False Uses high-resolution segmentation masks if available in the model. This can enhance mask quality for segmentation tasks, providing finer detail.
embed list[int] None Specifies the layers from which to extract feature vectors or embeddings. Useful for downstream tasks like clustering or similarity search.