You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

175 lines
7.0 KiB

#include "inference.h"
#include <memory>
#include <opencv2/dnn.hpp>
#include <random>
namespace yolo {
// Constructor to initialize the model with default input shape
Inference::Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold) {
model_input_shape_ = cv::Size(640, 640); // Set the default size for models with dynamic shapes to prevent errors.
model_confidence_threshold_ = model_confidence_threshold;
model_NMS_threshold_ = model_NMS_threshold;
InitializeModel(model_path);
}
// Constructor to initialize the model with specified input shape
Inference::Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold) {
model_input_shape_ = model_input_shape;
model_confidence_threshold_ = model_confidence_threshold;
model_NMS_threshold_ = model_NMS_threshold;
InitializeModel(model_path);
}
void Inference::InitializeModel(const std::string &model_path) {
ov::Core core; // OpenVINO core object
std::shared_ptr<ov::Model> model = core.read_model(model_path); // Read the model from file
// If the model has dynamic shapes, reshape it to the specified input shape
if (model->is_dynamic()) {
model->reshape({1, 3, static_cast<long int>(model_input_shape_.height), static_cast<long int>(model_input_shape_.width)});
}
// Preprocessing setup for the model
ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC").set_color_format(ov::preprocess::ColorFormat::BGR);
ppp.input().preprocess().convert_element_type(ov::element::f32).convert_color(ov::preprocess::ColorFormat::RGB).scale({255, 255, 255});
ppp.input().model().set_layout("NCHW");
ppp.output().tensor().set_element_type(ov::element::f32);
model = ppp.build(); // Build the preprocessed model
// Compile the model for inference
compiled_model_ = core.compile_model(model, "AUTO");
inference_request_ = compiled_model_.create_infer_request(); // Create inference request
short width, height;
// Get input shape from the model
const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
const ov::Shape input_shape = inputs[0].get_shape();
height = input_shape[1];
width = input_shape[2];
model_input_shape_ = cv::Size2f(width, height);
// Get output shape from the model
const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
const ov::Shape output_shape = outputs[0].get_shape();
height = output_shape[1];
width = output_shape[2];
model_output_shape_ = cv::Size(width, height);
}
// Method to run inference on an input frame
void Inference::RunInference(cv::Mat &frame) {
Preprocessing(frame); // Preprocess the input frame
inference_request_.infer(); // Run inference
PostProcessing(frame); // Postprocess the inference results
}
// Method to preprocess the input frame
void Inference::Preprocessing(const cv::Mat &frame) {
cv::Mat resized_frame;
cv::resize(frame, resized_frame, model_input_shape_, 0, 0, cv::INTER_AREA); // Resize the frame to match the model input shape
// Calculate scaling factor
scale_factor_.x = static_cast<float>(frame.cols / model_input_shape_.width);
scale_factor_.y = static_cast<float>(frame.rows / model_input_shape_.height);
float *input_data = (float *)resized_frame.data; // Get pointer to resized frame data
const ov::Tensor input_tensor = ov::Tensor(compiled_model_.input().get_element_type(), compiled_model_.input().get_shape(), input_data); // Create input tensor
inference_request_.set_input_tensor(input_tensor); // Set input tensor for inference
}
// Method to postprocess the inference results
void Inference::PostProcessing(cv::Mat &frame) {
std::vector<int> class_list;
std::vector<float> confidence_list;
std::vector<cv::Rect> box_list;
// Get the output tensor from the inference request
const float *detections = inference_request_.get_output_tensor().data<const float>();
const cv::Mat detection_outputs(model_output_shape_, CV_32F, (float *)detections); // Create OpenCV matrix from output tensor
// Iterate over detections and collect class IDs, confidence scores, and bounding boxes
for (int i = 0; i < detection_outputs.cols; ++i) {
const cv::Mat classes_scores = detection_outputs.col(i).rowRange(4, detection_outputs.rows);
cv::Point class_id;
double score;
cv::minMaxLoc(classes_scores, nullptr, &score, nullptr, &class_id); // Find the class with the highest score
// Check if the detection meets the confidence threshold
if (score > model_confidence_threshold_) {
class_list.push_back(class_id.y);
confidence_list.push_back(score);
const float x = detection_outputs.at<float>(0, i);
const float y = detection_outputs.at<float>(1, i);
const float w = detection_outputs.at<float>(2, i);
const float h = detection_outputs.at<float>(3, i);
cv::Rect box;
box.x = static_cast<int>(x);
box.y = static_cast<int>(y);
box.width = static_cast<int>(w);
box.height = static_cast<int>(h);
box_list.push_back(box);
}
}
// Apply Non-Maximum Suppression (NMS) to filter overlapping bounding boxes
std::vector<int> NMS_result;
cv::dnn::NMSBoxes(box_list, confidence_list, model_confidence_threshold_, model_NMS_threshold_, NMS_result);
// Collect final detections after NMS
for (int i = 0; i < NMS_result.size(); ++i) {
Detection result;
const unsigned short id = NMS_result[i];
result.class_id = class_list[id];
result.confidence = confidence_list[id];
result.box = GetBoundingBox(box_list[id]);
DrawDetectedObject(frame, result);
}
}
// Method to get the bounding box in the correct scale
cv::Rect Inference::GetBoundingBox(const cv::Rect &src) const {
cv::Rect box = src;
box.x = (box.x - box.width / 2) * scale_factor_.x;
box.y = (box.y - box.height / 2) * scale_factor_.y;
box.width *= scale_factor_.x;
box.height *= scale_factor_.y;
return box;
}
void Inference::DrawDetectedObject(cv::Mat &frame, const Detection &detection) const {
const cv::Rect &box = detection.box;
const float &confidence = detection.confidence;
const int &class_id = detection.class_id;
// Generate a random color for the bounding box
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dis(120, 255);
const cv::Scalar &color = cv::Scalar(dis(gen), dis(gen), dis(gen));
// Draw the bounding box around the detected object
cv::rectangle(frame, cv::Point(box.x, box.y), cv::Point(box.x + box.width, box.y + box.height), color, 3);
// Prepare the class label and confidence text
std::string classString = classes_[class_id] + std::to_string(confidence).substr(0, 4);
// Get the size of the text box
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 0.75, 2, 0);
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
// Draw the text box
cv::rectangle(frame, textBox, color, cv::FILLED);
// Put the class label and confidence text above the bounding box
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 0.75, cv::Scalar(0, 0, 0), 2, 0);
}
} // namespace yolo