You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.7 KiB
144 lines
5.7 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import contextlib |
|
import os |
|
import subprocess |
|
import time |
|
from pathlib import Path |
|
|
|
import pytest |
|
|
|
from tests import MODEL, SOURCE, TMP |
|
from ultralytics import YOLO, download |
|
from ultralytics.utils import DATASETS_DIR, SETTINGS |
|
from ultralytics.utils.checks import check_requirements |
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("ray", install=False), reason="ray[tune] not installed") |
|
def test_model_ray_tune(): |
|
"""Tune YOLO model with Ray optimization library.""" |
|
YOLO("yolov8n-cls.yaml").tune( |
|
use_ray=True, data="imagenet10", grace_period=1, iterations=1, imgsz=32, epochs=1, plots=False, device="cpu" |
|
) |
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed") |
|
def test_mlflow(): |
|
"""Test training with MLflow tracking enabled.""" |
|
SETTINGS["mlflow"] = True |
|
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=3, plots=False, device="cpu") |
|
|
|
|
|
@pytest.mark.skipif(True, reason="Test failing in scheduled CI https://github.com/ultralytics/ultralytics/pull/8868") |
|
@pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed") |
|
def test_mlflow_keep_run_active(): |
|
import mlflow |
|
|
|
"""Test training with MLflow tracking enabled.""" |
|
SETTINGS["mlflow"] = True |
|
run_name = "Test Run" |
|
os.environ["MLFLOW_RUN"] = run_name |
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE=True |
|
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "True" |
|
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") |
|
status = mlflow.active_run().info.status |
|
assert status == "RUNNING", "MLflow run should be active when MLFLOW_KEEP_RUN_ACTIVE=True" |
|
|
|
run_id = mlflow.active_run().info.run_id |
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE=False |
|
os.environ["MLFLOW_KEEP_RUN_ACTIVE"] = "False" |
|
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") |
|
status = mlflow.get_run(run_id=run_id).info.status |
|
assert status == "FINISHED", "MLflow run should be ended when MLFLOW_KEEP_RUN_ACTIVE=False" |
|
|
|
# Test with MLFLOW_KEEP_RUN_ACTIVE not set |
|
os.environ.pop("MLFLOW_KEEP_RUN_ACTIVE", None) |
|
YOLO("yolov8n-cls.yaml").train(data="imagenet10", imgsz=32, epochs=1, plots=False, device="cpu") |
|
status = mlflow.get_run(run_id=run_id).info.status |
|
assert status == "FINISHED", "MLflow run should be ended by default when MLFLOW_KEEP_RUN_ACTIVE is not set" |
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("tritonclient", install=False), reason="tritonclient[all] not installed") |
|
def test_triton(): |
|
"""Test NVIDIA Triton Server functionalities.""" |
|
check_requirements("tritonclient[all]") |
|
from tritonclient.http import InferenceServerClient # noqa |
|
|
|
# Create variables |
|
model_name = "yolo" |
|
triton_repo = TMP / "triton_repo" # Triton repo path |
|
triton_model = triton_repo / model_name # Triton model path |
|
|
|
# Export model to ONNX |
|
f = YOLO(MODEL).export(format="onnx", dynamic=True) |
|
|
|
# Prepare Triton repo |
|
(triton_model / "1").mkdir(parents=True, exist_ok=True) |
|
Path(f).rename(triton_model / "1" / "model.onnx") |
|
(triton_model / "config.pbtxt").touch() |
|
|
|
# Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver |
|
tag = "nvcr.io/nvidia/tritonserver:23.09-py3" # 6.4 GB |
|
|
|
# Pull the image |
|
subprocess.call(f"docker pull {tag}", shell=True) |
|
|
|
# Run the Triton server and capture the container ID |
|
container_id = ( |
|
subprocess.check_output( |
|
f"docker run -d --rm -v {triton_repo}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models", |
|
shell=True, |
|
) |
|
.decode("utf-8") |
|
.strip() |
|
) |
|
|
|
# Wait for the Triton server to start |
|
triton_client = InferenceServerClient(url="localhost:8000", verbose=False, ssl=False) |
|
|
|
# Wait until model is ready |
|
for _ in range(10): |
|
with contextlib.suppress(Exception): |
|
assert triton_client.is_model_ready(model_name) |
|
break |
|
time.sleep(1) |
|
|
|
# Check Triton inference |
|
YOLO(f"http://localhost:8000/{model_name}", "detect")(SOURCE) # exported model inference |
|
|
|
# Kill and remove the container at the end of the test |
|
subprocess.call(f"docker kill {container_id}", shell=True) |
|
|
|
|
|
@pytest.mark.skipif(not check_requirements("pycocotools", install=False), reason="pycocotools not installed") |
|
def test_pycocotools(): |
|
"""Validate model predictions using pycocotools.""" |
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.models.yolo.pose import PoseValidator |
|
from ultralytics.models.yolo.segment import SegmentationValidator |
|
|
|
# Download annotations after each dataset downloads first |
|
url = "https://github.com/ultralytics/assets/releases/download/v8.2.0/" |
|
|
|
args = {"model": "yolov8n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64} |
|
validator = DetectionValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8/annotations") |
|
_ = validator.eval_json(validator.stats) |
|
|
|
args = {"model": "yolov8n-seg.pt", "data": "coco8-seg.yaml", "save_json": True, "imgsz": 64} |
|
validator = SegmentationValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f"{url}instances_val2017.json", dir=DATASETS_DIR / "coco8-seg/annotations") |
|
_ = validator.eval_json(validator.stats) |
|
|
|
args = {"model": "yolov8n-pose.pt", "data": "coco8-pose.yaml", "save_json": True, "imgsz": 64} |
|
validator = PoseValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f"{url}person_keypoints_val2017.json", dir=DATASETS_DIR / "coco8-pose/annotations") |
|
_ = validator.eval_json(validator.stats)
|
|
|