You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Muhammad Rizwan Munawar 21ca235681
`ultralytics 8.2.56` Streamlit tracking app (#14269)
7 months ago
..
src
Cargo.toml Refactor Python code (#13448) 8 months ago
README.md `ultralytics 8.2.56` Streamlit tracking app (#14269) 7 months ago

README.md

YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks

This repository provides a Rust demo for performing YOLOv8 tasks like Classification, Segmentation, Detection, Pose Detection and OBB using ONNXRuntime.

Recently Updated

  • Add YOLOv8-OBB demo
  • Update ONNXRuntime to 1.17.x

Newly updated YOLOv8 example code is located in this repository (https://github.com/jamjamjon/usls/tree/main/examples/yolo)

Features

  • Support Classification, Segmentation, Detection, Pose(Keypoints)-Detection, OBB tasks.
  • Support FP16 & FP32 ONNX models.
  • Support CPU, CUDA and TensorRT execution provider to accelerate computation.
  • Support dynamic input shapes(batch, width, height).

Installation

1. Install Rust

Please follow the Rust official installation. (https://www.rust-lang.org/tools/install)

2. Install ONNXRuntime

This repository use ort crate, which is ONNXRuntime wrapper for Rust. (https://docs.rs/ort/latest/ort/)

You can follow the instruction with ort doc or simply do this:

On ubuntu, You can do like this:

vim ~/.bashrc

# Add the path of ONNXRUntime lib
export LD_LIBRARY_PATH=/home/qweasd/Documents/onnxruntime-linux-x64-gpu-1.16.3/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

source ~/.bashrc

3. [Optional] Install CUDA & CuDNN & TensorRT

  • CUDA execution provider requires CUDA v11.6+.
  • TensorRT execution provider requires CUDA v11.4+ and TensorRT v8.4+.

Get Started

1. Export the YOLOv8 ONNX Models

pip install -U ultralytics

# export onnx model with dynamic shapes
yolo export model=yolov8m.pt format=onnx  simplify dynamic
yolo export model=yolov8m-cls.pt format=onnx  simplify dynamic
yolo export model=yolov8m-pose.pt format=onnx  simplify dynamic
yolo export model=yolov8m-seg.pt format=onnx  simplify dynamic


# export onnx model with constant shapes
yolo export model=yolov8m.pt format=onnx  simplify
yolo export model=yolov8m-cls.pt format=onnx  simplify
yolo export model=yolov8m-pose.pt format=onnx  simplify
yolo export model=yolov8m-seg.pt format=onnx  simplify

2. Run Inference

It will perform inference with the ONNX model on the source image.

cargo run --release -- --model <MODEL> --source <SOURCE>

Set --cuda to use CUDA execution provider to speed up inference.

cargo run --release -- --cuda --model <MODEL> --source <SOURCE>

Set --trt to use TensorRT execution provider, and you can set --fp16 at the same time to use TensorRT FP16 engine.

cargo run --release -- --trt --fp16 --model <MODEL> --source <SOURCE>

Set --device_id to select which device to run. When you have only one GPU, and you set device_id to 1 will not cause program panic, the ort would automatically fall back to CPU EP.

cargo run --release -- --cuda --device_id 0 --model <MODEL> --source <SOURCE>

Set --batch to do multi-batch-size inference.

If you're using --trt, you can also set --batch-min and --batch-max to explicitly specify min/max/opt batch for dynamic batch input.(https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#explicit-shape-range-for-dynamic-shape-input).(Note that the ONNX model should exported with dynamic shapes)

cargo run --release -- --cuda --batch 2 --model <MODEL> --source <SOURCE>

Set --height and --width to do dynamic image size inference. (Note that the ONNX model should exported with dynamic shapes)

cargo run --release -- --cuda --width 480 --height 640 --model <MODEL> --source <SOURCE>

Set --profile to check time consumed in each stage.(Note that the model usually needs to take 1~3 times dry run to warmup. Make sure to run enough times to evaluate the result.)

cargo run --release -- --trt --fp16 --profile --model <MODEL> --source <SOURCE>

Results: (yolov8m.onnx, batch=1, 3 times, trt, fp16, RTX 3060Ti)

==> 0
[Model Preprocess]: 12.75788ms
[ORT H2D]: 237.118µs
[ORT Inference]: 507.895469ms
[ORT D2H]: 191.655µs
[Model Inference]: 508.34589ms
[Model Postprocess]: 1.061122ms
==> 1
[Model Preprocess]: 13.658655ms
[ORT H2D]: 209.975µs
[ORT Inference]: 5.12372ms
[ORT D2H]: 182.389µs
[Model Inference]: 5.530022ms
[Model Postprocess]: 1.04851ms
==> 2
[Model Preprocess]: 12.475332ms
[ORT H2D]: 246.127µs
[ORT Inference]: 5.048432ms
[ORT D2H]: 187.117µs
[Model Inference]: 5.493119ms
[Model Postprocess]: 1.040906ms

And also:

--conf: confidence threshold [default: 0.3]

--iou: iou threshold in NMS [default: 0.45]

--kconf: confidence threshold of keypoint [default: 0.55]

--plot: plot inference result with random RGB color and save

you can check out all CLI arguments by:

git clone https://github.com/ultralytics/ultralytics
cd ultralytics/examples/YOLOv8-ONNXRuntime-Rust
cargo run --release -- --help

Examples

Ultralytics YOLO Tasks

Classification

Running dynamic shape ONNX model on CPU with image size --height 224 --width 224. Saving plotted image in runs directory.

cargo run --release -- --model ../assets/weights/yolov8m-cls-dyn.onnx --source ../assets/images/dog.jpg --height 224 --width 224 --plot --profile

You will see result like:

Summary:
> Task: Classify (Ultralytics 8.0.217)
> EP: Cpu
> Dtype: Float32
> Batch: 1 (Dynamic), Height: 224 (Dynamic), Width: 224 (Dynamic)
> nc: 1000 nk: 0, nm: 0, conf: 0.3, kconf: 0.55, iou: 0.45

[Model Preprocess]: 16.363477ms
[ORT H2D]: 50.722µs
[ORT Inference]: 16.295808ms
[ORT D2H]: 8.37µs
[Model Inference]: 16.367046ms
[Model Postprocess]: 3.527µs
[
    YOLOResult {
        Probs(top5): Some([(208, 0.6950566), (209, 0.13823675), (178, 0.04849795), (215, 0.019029364), (212, 0.016506357)]),
        Bboxes: None,
        Keypoints: None,
        Masks: None,
    },
]

Object Detection

Using CUDA EP and dynamic image size --height 640 --width 480

cargo run --release -- --cuda --model ../assets/weights/yolov8m-dynamic.onnx --source ../assets/images/bus.jpg --plot --height 640 --width 480

Pose Detection

using TensorRT EP

cargo run --release -- --trt --model ../assets/weights/yolov8m-pose.onnx --source ../assets/images/bus.jpg --plot

Instance Segmentation

using TensorRT EP and FP16 model --fp16

cargo run --release --  --trt --fp16 --model ../assets/weights/yolov8m-seg.onnx --source ../assets/images/0172.jpg --plot