You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
12 KiB
248 lines
12 KiB
--- |
|
comments: true |
|
description: Object Counting Using Ultralytics YOLOv8 |
|
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK |
|
--- |
|
|
|
# Object Counting using Ultralytics YOLOv8 🚀 |
|
|
|
## What is Object Counting? |
|
|
|
Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities. |
|
|
|
<p align="center"> |
|
<br> |
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Watch:</strong> Object Counting using Ultralytics YOLOv8 |
|
</p> |
|
|
|
## Advantages of Object Counting? |
|
|
|
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management. |
|
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection. |
|
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains. |
|
|
|
## Real World Applications |
|
|
|
| Logistics | Aquaculture | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) | |
|
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 | |
|
|
|
!!! Example "Object Counting using YOLOv8 Example" |
|
|
|
=== "Count in Region" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
# Define region points |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("object_counting_output.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, |
|
(w, h)) |
|
|
|
# Init Object Counter |
|
counter = object_counter.ObjectCounter() |
|
counter.set_args(view_img=True, |
|
reg_pts=region_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
tracks = model.track(im0, persist=True, show=False) |
|
|
|
im0 = counter.start_counting(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
``` |
|
|
|
=== "Count in Polygon" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
# Define region points as a polygon with 5 points |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("object_counting_output.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, |
|
(w, h)) |
|
|
|
# Init Object Counter |
|
counter = object_counter.ObjectCounter() |
|
counter.set_args(view_img=True, |
|
reg_pts=region_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
tracks = model.track(im0, persist=True, show=False) |
|
|
|
im0 = counter.start_counting(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
``` |
|
|
|
=== "Count in Line" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
# Define line points |
|
line_points = [(20, 400), (1080, 400)] |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("object_counting_output.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, |
|
(w, h)) |
|
|
|
# Init Object Counter |
|
counter = object_counter.ObjectCounter() |
|
counter.set_args(view_img=True, |
|
reg_pts=line_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
tracks = model.track(im0, persist=True, show=False) |
|
|
|
im0 = counter.start_counting(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
``` |
|
|
|
=== "Specific Classes" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
from ultralytics.solutions import object_counter |
|
import cv2 |
|
|
|
model = YOLO("yolov8n.pt") |
|
cap = cv2.VideoCapture("path/to/video/file.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) |
|
|
|
line_points = [(20, 400), (1080, 400)] # line or region points |
|
classes_to_count = [0, 2] # person and car classes for count |
|
|
|
# Video writer |
|
video_writer = cv2.VideoWriter("object_counting_output.avi", |
|
cv2.VideoWriter_fourcc(*'mp4v'), |
|
fps, |
|
(w, h)) |
|
|
|
# Init Object Counter |
|
counter = object_counter.ObjectCounter() |
|
counter.set_args(view_img=True, |
|
reg_pts=line_points, |
|
classes_names=model.names, |
|
draw_tracks=True) |
|
|
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
print("Video frame is empty or video processing has been successfully completed.") |
|
break |
|
tracks = model.track(im0, persist=True, show=False, |
|
classes=classes_to_count) |
|
|
|
im0 = counter.start_counting(im0, tracks) |
|
video_writer.write(im0) |
|
|
|
cap.release() |
|
video_writer.release() |
|
cv2.destroyAllWindows() |
|
``` |
|
|
|
???+ tip "Region is Movable" |
|
|
|
You can move the region anywhere in the frame by clicking on its edges |
|
|
|
### Optional Arguments `set_args` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------------------|-------------|----------------------------|-----------------------------------------------| |
|
| `view_img` | `bool` | `False` | Display frames with counts | |
|
| `view_in_counts` | `bool` | `True` | Display in-counts only on video frame | |
|
| `view_out_counts` | `bool` | `True` | Display out-counts only on video frame | |
|
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness | |
|
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | |
|
| `classes_names` | `dict` | `model.model.names` | Dictionary of Class Names | |
|
| `region_color` | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line | |
|
| `track_thickness` | `int` | `2` | Thickness of Tracking Lines | |
|
| `draw_tracks` | `bool` | `False` | Enable drawing Track lines | |
|
| `track_color` | `RGB Color` | `(0, 255, 0)` | Color for each track line | |
|
| `line_dist_thresh` | `int` | `15` | Euclidean Distance threshold for line counter | |
|
| `count_txt_thickness` | `int` | `2` | Thickness of Object counts text | |
|
| `count_txt_color` | `RGB Color` | `(255, 255, 255)` | Foreground color for Object counts text | |
|
| `region_thickness` | `int` | `5` | Thickness for object counter region or line | |
|
| `fontsize` | `float` | `0.6` | Font size of counting text | |
|
| `line_color` | `RGB Color` | `(255, 255, 255)` | Count highlighter color | |
|
| `cls_txtdisplay_gap` | `int` | `50` | Display gap between each class count | |
|
|
|
### Arguments `model.track` |
|
|
|
| Name | Type | Default | Description | |
|
|-----------|---------|----------------|-------------------------------------------------------------| |
|
| `source` | `im0` | `None` | source directory for images or videos | |
|
| `persist` | `bool` | `False` | persisting tracks between frames | |
|
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' | |
|
| `conf` | `float` | `0.3` | Confidence Threshold | |
|
| `iou` | `float` | `0.5` | IOU Threshold | |
|
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | |
|
| `verbose` | `bool` | `True` | Display the object tracking results |
|
|
|