You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

160 lines
6.9 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLO Continuous Integration (CI) GitHub Actions tests
name: Ultralytics CI
on:
push:
branches: [main]
pull_request:
branches: [main]
schedule:
- cron: '0 0 * * *' # runs at 00:00 UTC every day
jobs:
Benchmarks:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.10']
model: [yolov8n]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
#- name: Cache pip
# uses: actions/cache@v3
# with:
# path: ~/.cache/pip
# key: ${{ runner.os }}-Benchmarks-${{ hashFiles('requirements.txt') }}
# restore-keys: ${{ runner.os }}-Benchmarks-
- name: Install requirements
shell: bash # for Windows compatibility
run: |
python -m pip install --upgrade pip wheel
if [ "${{ matrix.os }}" == "macos-latest" ]; then
pip install -e . coremltools openvino-dev tensorflow-macos --extra-index-url https://download.pytorch.org/whl/cpu
else
pip install -e . coremltools openvino-dev tensorflow-cpu --extra-index-url https://download.pytorch.org/whl/cpu
fi
yolo export format=tflite
- name: Check environment
run: |
echo "RUNNER_OS is ${{ runner.os }}"
echo "GITHUB_EVENT_NAME is ${{ github.event_name }}"
echo "GITHUB_WORKFLOW is ${{ github.workflow }}"
echo "GITHUB_ACTOR is ${{ github.actor }}"
echo "GITHUB_REPOSITORY is ${{ github.repository }}"
echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}"
python --version
pip --version
pip list
- name: Benchmark DetectionModel
shell: python
run: |
from ultralytics.yolo.utils.benchmarks import benchmark
benchmark(model='${{ matrix.model }}.pt', imgsz=160, half=False, hard_fail=0.20)
- name: Benchmark SegmentationModel
shell: python
run: |
from ultralytics.yolo.utils.benchmarks import benchmark
benchmark(model='${{ matrix.model }}-seg.pt', imgsz=160, half=False, hard_fail=0.14)
- name: Benchmark ClassificationModel
shell: python
run: |
from ultralytics.yolo.utils.benchmarks import benchmark
benchmark(model='${{ matrix.model }}-cls.pt', imgsz=160, half=False, hard_fail=0.60)
- name: Benchmark Summary
run: cat benchmarks.log
Tests:
timeout-minutes: 60
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ['3.7', '3.8', '3.9', '3.10']
model: [yolov8n]
torch: [latest]
include:
- os: ubuntu-latest
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
model: yolov8n
torch: '1.8.0' # min torch version CI https://pypi.org/project/torchvision/
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Get cache dir # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
id: pip-cache
run: echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT
shell: bash # for Windows compatibility
- name: Cache pip
uses: actions/cache@v3
with:
path: ${{ steps.pip-cache.outputs.dir }}
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-${{ matrix.python-version }}-pip-
- name: Install requirements
shell: bash # for Windows compatibility
run: |
python -m pip install --upgrade pip wheel
if [ "${{ matrix.torch }}" == "1.8.0" ]; then
pip install -e '.[export]' torch==1.8.0 torchvision==0.9.0 pytest --extra-index-url https://download.pytorch.org/whl/cpu
else
pip install -e '.[export]' pytest --extra-index-url https://download.pytorch.org/whl/cpu
fi
- name: Check environment
run: |
echo "RUNNER_OS is ${{ runner.os }}"
echo "GITHUB_EVENT_NAME is ${{ github.event_name }}"
echo "GITHUB_WORKFLOW is ${{ github.workflow }}"
echo "GITHUB_ACTOR is ${{ github.actor }}"
echo "GITHUB_REPOSITORY is ${{ github.repository }}"
echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}"
python --version
pip --version
pip list
- name: Test pip package
shell: python
env:
APIKEY: ${{ secrets.ULTRALYTICS_HUB_APIKEY }}
run: |
import os
import ultralytics
key = os.environ['APIKEY']
ultralytics.checks()
# ultralytics.reset_model(key) # reset trained model
# ultralytics.start(key) # train model
- name: Test detection
shell: bash # for Windows compatibility
run: |
yolo task=detect mode=train data=coco8.yaml model=yolov8n.yaml epochs=1 imgsz=32
yolo task=detect mode=train data=coco8.yaml model=yolov8n.pt epochs=1 imgsz=32
yolo task=detect mode=val data=coco8.yaml model=runs/detect/train/weights/last.pt imgsz=32
yolo task=detect mode=predict model=runs/detect/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/detect/train/weights/last.pt imgsz=32 format=torchscript
- name: Test segmentation
shell: bash # for Windows compatibility
run: |
yolo task=segment mode=train data=coco8-seg.yaml model=yolov8n-seg.yaml epochs=1 imgsz=32
yolo task=segment mode=train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=1 imgsz=32
yolo task=segment mode=val data=coco8-seg.yaml model=runs/segment/train/weights/last.pt imgsz=32
yolo task=segment mode=predict model=runs/segment/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/segment/train/weights/last.pt imgsz=32 format=torchscript
- name: Test classification
shell: bash # for Windows compatibility
run: |
yolo task=classify mode=train data=imagenet10 model=yolov8n-cls.yaml epochs=1 imgsz=32
yolo task=classify mode=train data=imagenet10 model=yolov8n-cls.pt epochs=1 imgsz=32
yolo task=classify mode=val data=imagenet10 model=runs/classify/train/weights/last.pt imgsz=32
yolo task=classify mode=predict model=runs/classify/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
yolo mode=export model=runs/classify/train/weights/last.pt imgsz=32 format=torchscript
- name: Pytest tests
shell: bash # for Windows compatibility
run: pytest tests