You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.2 KiB
90 lines
3.2 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import cv2 |
|
import pytest |
|
|
|
from ultralytics import YOLO, solutions |
|
from ultralytics.utils.downloads import safe_download |
|
|
|
MAJOR_SOLUTIONS_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solutions_ci_demo.mp4" |
|
WORKOUTS_SOLUTION_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solution_ci_pose_demo.mp4" |
|
|
|
|
|
@pytest.mark.slow |
|
def test_major_solutions(): |
|
"""Test the object counting, heatmap, speed estimation and queue management solution.""" |
|
|
|
safe_download(url=MAJOR_SOLUTIONS_DEMO) |
|
model = YOLO("yolov8n.pt") |
|
names = model.names |
|
cap = cv2.VideoCapture("solutions_ci_demo.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] |
|
counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False) |
|
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, names=names, view_img=False) |
|
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False) |
|
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False) |
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
break |
|
original_im0 = im0.copy() |
|
tracks = model.track(im0, persist=True, show=False) |
|
_ = counter.start_counting(original_im0.copy(), tracks) |
|
_ = heatmap.generate_heatmap(original_im0.copy(), tracks) |
|
_ = speed.estimate_speed(original_im0.copy(), tracks) |
|
_ = queue.process_queue(original_im0.copy(), tracks) |
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
|
|
@pytest.mark.slow |
|
def test_aigym(): |
|
"""Test the workouts monitoring solution.""" |
|
|
|
safe_download(url=WORKOUTS_SOLUTION_DEMO) |
|
model = YOLO("yolov8n-pose.pt") |
|
cap = cv2.VideoCapture("solution_ci_pose_demo.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
gym_object = solutions.AIGym(line_thickness=2, pose_type="squat", kpts_to_check=[5, 11, 13]) |
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
break |
|
results = model.track(im0, verbose=False) |
|
_ = gym_object.start_counting(im0, results) |
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
|
|
@pytest.mark.slow |
|
def test_instance_segmentation(): |
|
"""Test the instance segmentation solution.""" |
|
|
|
from ultralytics.utils.plotting import Annotator, colors |
|
|
|
model = YOLO("yolov8n-seg.pt") |
|
names = model.names |
|
cap = cv2.VideoCapture("solutions_ci_demo.mp4") |
|
assert cap.isOpened(), "Error reading video file" |
|
while cap.isOpened(): |
|
success, im0 = cap.read() |
|
if not success: |
|
break |
|
results = model.predict(im0) |
|
annotator = Annotator(im0, line_width=2) |
|
if results[0].masks is not None: |
|
clss = results[0].boxes.cls.cpu().tolist() |
|
masks = results[0].masks.xy |
|
for mask, cls in zip(masks, clss): |
|
color = colors(int(cls), True) |
|
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)]) |
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
|
|
@pytest.mark.slow |
|
def test_streamlit_predict(): |
|
"""Test streamlit predict live inference solution.""" |
|
|
|
solutions.inference()
|
|
|