You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

222 lines
8.8 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import shutil
import uuid
from itertools import product
from pathlib import Path
import pytest
from tests import MODEL, SOURCE
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import (
IS_RASPBERRYPI,
LINUX,
MACOS,
WINDOWS,
checks,
)
from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
def test_export_torchscript():
"""Test YOLO model exporting to TorchScript format for compatibility and correctness."""
file = YOLO(MODEL).export(format="torchscript", optimize=False, imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
def test_export_onnx():
"""Test YOLO model export to ONNX format with dynamic axes."""
file = YOLO(MODEL).export(format="onnx", dynamic=True, imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
def test_export_openvino():
"""Test YOLO exports to OpenVINO format for model inference compatibility."""
file = YOLO(MODEL).export(format="openvino", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.slow
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
file = YOLO(TASK2MODEL[task]).export(
format="openvino",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
data=TASK2DATA[task],
)
if WINDOWS:
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
# See https://github.com/ultralytics/ultralytics/actions/runs/8957949304/job/24601616830?pr=10423
file = Path(file)
file = file.rename(file.with_stem(f"{file.stem}-{uuid.uuid4()}"))
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
shutil.rmtree(file, ignore_errors=True) # retry in case of potential lingering multi-threaded file usage errors
@pytest.mark.slow
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch, simplify", product(TASKS, [True, False], [False], [False], [1, 2], [True, False])
)
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
"""Test YOLO exports to ONNX format with various configurations and parameters."""
file = YOLO(TASK2MODEL[task]).export(
format="onnx",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
simplify=simplify,
)
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
Path(file).unlink() # cleanup
@pytest.mark.slow
@pytest.mark.parametrize("task, dynamic, int8, half, batch", product(TASKS, [False], [False], [False], [1, 2]))
def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
"""Tests YOLO model exports to TorchScript format under varied configurations."""
file = YOLO(TASK2MODEL[task]).export(
format="torchscript",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
Path(file).unlink() # cleanup
@pytest.mark.slow
@pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to CoreML format with various parameter configurations."""
file = YOLO(TASK2MODEL[task]).export(
format="coreml",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
shutil.rmtree(file) # cleanup
@pytest.mark.slow
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_tflite_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to TFLite format considering various export configurations."""
file = YOLO(TASK2MODEL[task]).export(
format="tflite",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
)
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
Path(file).unlink() # cleanup
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
@pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
def test_export_coreml():
"""Test YOLO exports to CoreML format, optimized for macOS only."""
if MACOS:
file = YOLO(MODEL).export(format="coreml", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # model prediction only supported on macOS for nms=False models
else:
YOLO(MODEL).export(format="coreml", nms=True, imgsz=32)
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
def test_export_tflite():
"""Test YOLO exports to TFLite format under specific OS and Python version conditions."""
model = YOLO(MODEL)
file = model.export(format="tflite", imgsz=32)
YOLO(file)(SOURCE, imgsz=32)
@pytest.mark.skipif(True, reason="Test disabled")
@pytest.mark.skipif(not LINUX, reason="TF suffers from install conflicts on Windows and macOS")
def test_export_pb():
"""Test YOLO exports to TensorFlow's Protobuf (*.pb) format."""
model = YOLO(MODEL)
file = model.export(format="pb", imgsz=32)
YOLO(file)(SOURCE, imgsz=32)
@pytest.mark.skipif(True, reason="Test disabled as Paddle protobuf and ONNX protobuf requirements conflict.")
def test_export_paddle():
"""Test YOLO exports to Paddle format, noting protobuf conflicts with ONNX."""
YOLO(MODEL).export(format="paddle", imgsz=32)
@pytest.mark.slow
@pytest.mark.skipif(IS_RASPBERRYPI, reason="MNN not supported on Raspberry Pi")
def test_export_mnn():
"""Test YOLO exports to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
file = YOLO(MODEL).export(format="mnn", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.slow
def test_export_ncnn():
"""Test YOLO exports to NCNN format."""
file = YOLO(MODEL).export(format="ncnn", imgsz=32)
YOLO(file)(SOURCE, imgsz=32) # exported model inference
@pytest.mark.skipif(not LINUX or MACOS, reason="Skipping test on Windows and Macos")
def test_export_imx500_ptq():
"""Test YOLOv8n exports to imx500 format."""
model = YOLO("yolov8n.pt")
file = model.export(format="imx500", imgsz=32, gptq=False)
YOLO(file)(SOURCE, imgsz=32)
@pytest.mark.skipif(IS_RASPBERRYPI or not LINUX or MACOS, reason="Skipping test on Raspberry Pi and Windows")
def test_export_imx500_gptq():
"""Test YOLOv8n exports to imx500 format with gptq."""
model = YOLO("yolov8n.pt")
file = model.export(format="imx500", imgsz=32, gptq=True)
YOLO(file)(SOURCE, imgsz=32)