You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.8 KiB
155 lines
5.8 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
from itertools import product |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
|
|
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE |
|
from ultralytics import YOLO |
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS |
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR |
|
from ultralytics.utils.checks import check_amp |
|
|
|
|
|
def test_checks(): |
|
"""Validate CUDA settings against torch CUDA functions.""" |
|
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE |
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_amp(): |
|
"""Test AMP training checks.""" |
|
model = YOLO("yolo11n.pt").model.cuda() |
|
assert check_amp(model) |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability") |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
@pytest.mark.parametrize( |
|
"task, dynamic, int8, half, batch", |
|
[ # generate all combinations but exclude those where both int8 and half are True |
|
(task, dynamic, int8, half, batch) |
|
# Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high |
|
# for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2]) |
|
for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2]) |
|
if not (int8 and half) # exclude cases where both int8 and half are True |
|
], |
|
) |
|
def test_export_engine_matrix(task, dynamic, int8, half, batch): |
|
"""Test YOLO model export to TensorRT format for various configurations and run inference.""" |
|
file = YOLO(TASK2MODEL[task]).export( |
|
format="engine", |
|
imgsz=32, |
|
dynamic=dynamic, |
|
int8=int8, |
|
half=half, |
|
batch=batch, |
|
data=TASK2DATA[task], |
|
workspace=1, # reduce workspace GB for less resource utilization during testing |
|
simplify=True, # use 'onnxslim' |
|
) |
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference |
|
Path(file).unlink() # cleanup |
|
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_train(): |
|
"""Test model training on a minimal dataset using available CUDA devices.""" |
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] |
|
YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64 |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_predict_multiple_devices(): |
|
"""Validate model prediction consistency across CPU and CUDA devices.""" |
|
model = YOLO("yolo11n.pt") |
|
model = model.cpu() |
|
assert str(model.device) == "cpu" |
|
_ = model(SOURCE) # CPU inference |
|
assert str(model.device) == "cpu" |
|
|
|
model = model.to("cuda:0") |
|
assert str(model.device) == "cuda:0" |
|
_ = model(SOURCE) # CUDA inference |
|
assert str(model.device) == "cuda:0" |
|
|
|
model = model.cpu() |
|
assert str(model.device) == "cpu" |
|
_ = model(SOURCE) # CPU inference |
|
assert str(model.device) == "cpu" |
|
|
|
model = model.cuda() |
|
assert str(model.device) == "cuda:0" |
|
_ = model(SOURCE) # CUDA inference |
|
assert str(model.device) == "cuda:0" |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_autobatch(): |
|
"""Check optimal batch size for YOLO model training using autobatch utility.""" |
|
from ultralytics.utils.autobatch import check_train_batch_size |
|
|
|
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_utils_benchmarks(): |
|
"""Profile YOLO models for performance benchmarks.""" |
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
# Pre-export a dynamic engine model to use dynamic inference |
|
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1) |
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available") |
|
def test_predict_sam(): |
|
"""Test SAM model predictions using different prompts, including bounding boxes and point annotations.""" |
|
from ultralytics import SAM |
|
from ultralytics.models.sam import Predictor as SAMPredictor |
|
|
|
# Load a model |
|
model = SAM(WEIGHTS_DIR / "sam_b.pt") |
|
|
|
# Display model information (optional) |
|
model.info() |
|
|
|
# Run inference |
|
model(SOURCE, device=0) |
|
|
|
# Run inference with bboxes prompt |
|
model(SOURCE, bboxes=[439, 437, 524, 709], device=0) |
|
|
|
# Run inference with no labels |
|
model(ASSETS / "zidane.jpg", points=[900, 370], device=0) |
|
|
|
# Run inference with 1D points and 1D labels |
|
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0) |
|
|
|
# Run inference with 2D points and 1D labels |
|
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0) |
|
|
|
# Run inference with multiple 2D points and 1D labels |
|
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0) |
|
|
|
# Run inference with 3D points and 2D labels (multiple points per object) |
|
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0) |
|
|
|
# Create SAMPredictor |
|
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt") |
|
predictor = SAMPredictor(overrides=overrides) |
|
|
|
# Set image |
|
predictor.set_image(ASSETS / "zidane.jpg") # set with image file |
|
# predictor(bboxes=[439, 437, 524, 709]) |
|
# predictor(points=[900, 370], labels=[1]) |
|
|
|
# Reset image |
|
predictor.reset_image()
|
|
|