12 KiB
comments | description | keywords |
---|---|---|
true | Learn how to use oriented object detection models with Ultralytics YOLO. Instructions on training, validation, image prediction, and model export. | yolov8, oriented object detection, Ultralytics, DOTA dataset, rotated object detection, object detection, model training, model validation, image prediction, model export |
Oriented Bounding Boxes Object Detection
Oriented object detection goes a step further than object detection and introduce an extra angle to locate objects more accurate in an image.
The output of an oriented object detector is a set of rotated bounding boxes that exactly enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
!!! Tip "Tip"
YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
Watch: Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB) |
Watch: Object Detection with YOLOv8-OBB using Ultralytics HUB |
Visual Samples
Ships Detection using OBB | Vehicle Detection using OBB |
---|---|
Models
YOLOv8 pretrained OBB models are shown here, which are pretrained on the DOTAv1 dataset.
Models download automatically from the latest Ultralytics release on first use.
Model | size (pixels) |
mAPtest 50 |
Speed CPU ONNX (ms) |
Speed A100 TensorRT (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n-obb | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
YOLOv8s-obb | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
YOLOv8m-obb | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
YOLOv8l-obb | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
YOLOv8x-obb | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- mAPtest values are for single-model multiscale on DOTAv1 test dataset.
Reproduce byyolo val obb data=DOTAv1.yaml device=0 split=test
and submit merged results to DOTA evaluation. - Speed averaged over DOTAv1 val images using an Amazon EC2 P4d instance.
Reproduce byyolo val obb data=DOTAv1.yaml batch=1 device=0|cpu
Train
Train YOLOv8n-obb on the dota8.yaml
dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.yaml') # build a new model from YAML
model = YOLO('yolov8n-obb.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n-obb.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
results = model.train(data='dota8.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# Build a new model from YAML and start training from scratch
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640
# Start training from a pretrained *.pt model
yolo obb train data=dota8.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
# Build a new model from YAML, transfer pretrained weights to it and start training
yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640
```
Dataset format
OBB dataset format can be found in detail in the Dataset Guide.
Val
Validate trained YOLOv8n-obb model accuracy on the DOTA8 dataset. No argument need to passed as the model
retains its training data
and arguments as model attributes.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Validate the model
metrics = model.val(data='dota8.yaml') # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95(B)
metrics.box.map50 # map50(B)
metrics.box.map75 # map75(B)
metrics.box.maps # a list contains map50-95(B) of each category
```
=== "CLI"
```bash
yolo obb val model=yolov8n-obb.pt data=dota8.yaml # val official model
yolo obb val model=path/to/best.pt data=path/to/data.yaml # val custom model
```
Predict
Use a trained YOLOv8n-obb model to run predictions on images.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
```
=== "CLI"
```bash
yolo obb predict model=yolov8n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
```
See full predict
mode details in the Predict page.
Export
Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.
!!! Example
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n-obb.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained model
# Export the model
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-obb.pt format=onnx # export official model
yolo export model=path/to/best.pt format=onnx # export custom trained model
```
Available YOLOv8-obb export formats are in the table below. You can predict or validate directly on exported models, i.e. yolo predict model=yolov8n-obb.onnx
. Usage examples are shown for your model after export completes.
Format | format Argument |
Model | Metadata | Arguments |
---|---|---|---|---|
PyTorch | - | yolov8n-obb.pt |
✅ | - |
TorchScript | torchscript |
yolov8n-obb.torchscript |
✅ | imgsz , optimize , batch |
ONNX | onnx |
yolov8n-obb.onnx |
✅ | imgsz , half , dynamic , simplify , opset , batch |
OpenVINO | openvino |
yolov8n-obb_openvino_model/ |
✅ | imgsz , half , int8 , batch |
TensorRT | engine |
yolov8n-obb.engine |
✅ | imgsz , half , dynamic , simplify , workspace , batch |
CoreML | coreml |
yolov8n-obb.mlpackage |
✅ | imgsz , half , int8 , nms , batch |
TF SavedModel | saved_model |
yolov8n-obb_saved_model/ |
✅ | imgsz , keras , int8 , batch |
TF GraphDef | pb |
yolov8n-obb.pb |
❌ | imgsz , batch |
TF Lite | tflite |
yolov8n-obb.tflite |
✅ | imgsz , half , int8 , batch |
TF Edge TPU | edgetpu |
yolov8n-obb_edgetpu.tflite |
✅ | imgsz , batch |
TF.js | tfjs |
yolov8n-obb_web_model/ |
✅ | imgsz , half , int8 , batch |
PaddlePaddle | paddle |
yolov8n-obb_paddle_model/ |
✅ | imgsz , batch |
NCNN | ncnn |
yolov8n-obb_ncnn_model/ |
✅ | imgsz , half , batch |
See full export
details in the Export page.