You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

121 lines
4.9 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
import subprocess
import pytest
from PIL import Image
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
from ultralytics.utils.torch_utils import TORCH_1_9
# Constants
TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS]
MODELS = [WEIGHTS_DIR / TASK2MODEL[task] for task in TASKS]
def run(cmd):
"""Execute a shell command using subprocess."""
subprocess.run(cmd.split(), check=True)
def test_special_modes():
"""Test various special command-line modes for YOLO functionality."""
run("yolo help")
run("yolo checks")
run("yolo version")
run("yolo settings reset")
run("yolo cfg")
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
def test_train(task, model, data):
"""Test YOLO training for different tasks, models, and datasets."""
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 cache=disk")
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
def test_val(task, model, data):
"""Test YOLO validation process for specified task, model, and data using a shell command."""
run(f"yolo val {task} model={model} data={data} imgsz=32 save_txt save_json")
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
def test_predict(task, model, data):
"""Test YOLO prediction on provided sample assets for specified task and model."""
run(f"yolo predict model={model} source={ASSETS} imgsz=32 save save_crop save_txt")
@pytest.mark.parametrize("model", MODELS)
def test_export(model):
"""Test exporting a YOLO model to TorchScript format."""
run(f"yolo export model={model} format=torchscript imgsz=32")
def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"):
"""Test the RTDETR functionality within Ultralytics for detection tasks using specified model and data."""
# Warning: must use imgsz=640 (note also add coma, spaces, fraction=0.25 args to test single-image training)
run(f"yolo train {task} model={model} data={data} --imgsz= 160 epochs =1, cache = disk fraction=0.25")
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt")
if TORCH_1_9:
run(f"yolo predict {task} model='rtdetr-l.pt' source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt")
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="MobileSAM with CLIP is not supported in Python 3.12")
def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"):
"""Test FastSAM model for segmenting objects in images using various prompts within Ultralytics."""
source = ASSETS / "bus.jpg"
run(f"yolo segment val {task} model={model} data={data} imgsz=32")
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
from ultralytics import FastSAM
from ultralytics.models.sam import Predictor
# Create a FastSAM model
sam_model = FastSAM(model) # or FastSAM-x.pt
# Run inference on an image
for s in (source, Image.open(source)):
everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9)
# Remove small regions
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
# Run inference with bboxes and points and texts prompt at the same time
sam_model(source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog")
def test_mobilesam():
"""Test MobileSAM segmentation with point prompts using Ultralytics."""
from ultralytics import SAM
# Load the model
model = SAM(WEIGHTS_DIR / "mobile_sam.pt")
# Source
source = ASSETS / "zidane.jpg"
# Predict a segment based on a 1D point prompt and 1D labels.
model.predict(source, points=[900, 370], labels=[1])
# Predict a segment based on 3D points and 2D labels (multiple points per object).
model.predict(source, points=[[[900, 370], [1000, 100]]], labels=[[1, 1]])
# Predict a segment based on a box prompt
model.predict(source, bboxes=[439, 437, 524, 709], save=True)
# Predict all
# model(source)
# Slow Tests -----------------------------------------------------------------------------------------------------------
@pytest.mark.slow
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason="DDP is not available")
def test_train_gpu(task, model, data):
"""Test YOLO training on GPU(s) for various tasks and models."""
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0") # single GPU
run(f"yolo train {task} model={model} data={data} imgsz=32 epochs=1 device=0,1") # multi GPU