You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
13 KiB
188 lines
13 KiB
--- |
|
comments: true |
|
description: Aprenda a usar o Ultralytics YOLOv8 para tarefas de estimativa de pose. Encontre modelos pré-treinados, aprenda a treinar, validar, prever e exportar seu próprio modelo. |
|
keywords: Ultralytics, YOLO, YOLOv8, estimativa de pose, detecção de pontos-chave, detecção de objetos, modelos pré-treinados, aprendizado de máquina, inteligência artificial |
|
--- |
|
|
|
# Estimativa de Pose |
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418616-9811ac0b-a4a7-452a-8aba-484ba32bb4a8.png" alt="Exemplos de estimativa de pose"> |
|
|
|
A estimativa de pose é uma tarefa que envolve identificar a localização de pontos específicos em uma imagem, geralmente referidos como pontos-chave. Os pontos-chave podem representar várias partes do objeto como articulações, pontos de referência ou outras características distintas. As localizações dos pontos-chave são geralmente representadas como um conjunto de coordenadas 2D `[x, y]` ou 3D `[x, y, visível]`. |
|
|
|
A saída de um modelo de estimativa de pose é um conjunto de pontos que representam os pontos-chave em um objeto na imagem, geralmente junto com os escores de confiança para cada ponto. A estimativa de pose é uma boa escolha quando você precisa identificar partes específicas de um objeto em uma cena, e sua localização relativa entre si. |
|
|
|
<p align="center"> |
|
<br> |
|
<iframe width="720" height="405" src="https://www.youtube.com/embed/Y28xXQmju64?si=pCY4ZwejZFu6Z4kZ" |
|
title="Reprodutor de vídeo YouTube" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Assista:</strong> Estimativa de Pose com Ultralytics YOLOv8. |
|
</p> |
|
|
|
!!! Tip "Dica" |
|
|
|
Modelos YOLOv8 _pose_ usam o sufixo `-pose`, isto é `yolov8n-pose.pt`. Esses modelos são treinados no conjunto de dados [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco-pose.yaml) e são adequados para uma variedade de tarefas de estimativa de pose. |
|
|
|
## [Modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) |
|
|
|
Os modelos YOLOv8 Pose pré-treinados são mostrados aqui. Os modelos Detect, Segment e Pose são pré-treinados no conjunto de dados [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), enquanto os modelos Classify são pré-treinados no conjunto de dados [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml). |
|
|
|
[Modelos](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) são baixados automaticamente do último lançamento da Ultralytics [release](https://github.com/ultralytics/assets/releases) no primeiro uso. |
|
|
|
| Modelo | tamanho<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Velocidade<br><sup>CPU ONNX<br>(ms) | Velocidade<br><sup>A100 TensorRT<br>(ms) | parâmetros<br><sup>(M) | FLOPs<br><sup>(B) | |
|
|------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------|-------------------------------------|------------------------------------------|------------------------|-------------------| |
|
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 | |
|
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 | |
|
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 | |
|
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 | |
|
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 | |
|
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 | |
|
|
|
- **mAP<sup>val</sup>** valores são para um único modelo em escala única no conjunto de dados [COCO Keypoints val2017](http://cocodataset.org) |
|
. |
|
<br>Reproduza `yolo val pose data=coco-pose.yaml device=0` |
|
- **Velocidade** média em imagens COCO val usando uma instância [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) |
|
. |
|
<br>Reproduza `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu` |
|
|
|
## Treinar |
|
|
|
Treine um modelo YOLOv8-pose no conjunto de dados COCO128-pose. |
|
|
|
!!! Example "Exemplo" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Carregar um modelo |
|
model = YOLO('yolov8n-pose.yaml') # construir um novo modelo a partir do YAML |
|
model = YOLO('yolov8n-pose.pt') # carregar um modelo pré-treinado (recomendado para treinamento) |
|
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt') # construir a partir do YAML e transferir pesos |
|
|
|
# Treinar o modelo |
|
results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640) |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
# Construir um novo modelo a partir do YAML e começar o treinamento do zero |
|
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640 |
|
|
|
# Começar treinamento de um modelo *.pt pré-treinado |
|
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640 |
|
|
|
# Construir um novo modelo a partir do YAML, transferir pesos pré-treinados para ele e começar o treinamento |
|
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640 |
|
``` |
|
|
|
### Formato do conjunto de dados |
|
|
|
O formato do conjunto de dados de pose YOLO pode ser encontrado em detalhes no [Guia de Conjuntos de Dados](../../../datasets/pose/index.md). Para converter seu conjunto de dados existente de outros formatos (como COCO etc.) para o formato YOLO, por favor, use a ferramenta [JSON2YOLO](https://github.com/ultralytics/JSON2YOLO) da Ultralytics. |
|
|
|
## Validar |
|
|
|
Valide a acurácia do modelo YOLOv8n-pose treinado no conjunto de dados COCO128-pose. Não é necessário passar nenhum argumento, pois o `model` |
|
retém seus `data` de treinamento e argumentos como atributos do modelo. |
|
|
|
!!! Example "Exemplo" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Carregar um modelo |
|
model = YOLO('yolov8n-pose.pt') # carregar um modelo oficial |
|
model = YOLO('caminho/para/melhor.pt') # carregar um modelo personalizado |
|
|
|
# Validar o modelo |
|
metrics = model.val() # nenhum argumento necessário, conjunto de dados e configurações lembradas |
|
metrics.box.map # map50-95 |
|
metrics.box.map50 # map50 |
|
metrics.box.map75 # map75 |
|
metrics.box.maps # uma lista contém map50-95 de cada categoria |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo pose val model=yolov8n-pose.pt # validar modelo oficial |
|
yolo pose val model=caminho/para/melhor.pt # validar modelo personalizado |
|
``` |
|
|
|
## Prever |
|
|
|
Use um modelo YOLOv8n-pose treinado para executar previsões em imagens. |
|
|
|
!!! Example "Exemplo" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Carregar um modelo |
|
model = YOLO('yolov8n-pose.pt') # carregar um modelo oficial |
|
model = YOLO('caminho/para/melhor.pt') # carregar um modelo personalizado |
|
|
|
# Prever com o modelo |
|
results = model('https://ultralytics.com/images/bus.jpg') # prever em uma imagem |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg' # prever com modelo oficial |
|
yolo pose predict model=caminho/para/melhor.pt source='https://ultralytics.com/images/bus.jpg' # prever com modelo personalizado |
|
``` |
|
|
|
Veja detalhes completos do modo `predict` na página [Prever](https://docs.ultralytics.com/modes/predict/). |
|
|
|
## Exportar |
|
|
|
Exporte um modelo YOLOv8n Pose para um formato diferente como ONNX, CoreML, etc. |
|
|
|
!!! Example "Exemplo" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Carregar um modelo |
|
model = YOLO('yolov8n-pose.pt') # carregar um modelo oficial |
|
model = YOLO('caminho/para/melhor.pt') # carregar um modelo treinado personalizado |
|
|
|
# Exportar o modelo |
|
model.export(format='onnx') |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo export model=yolov8n-pose.pt format=onnx # exportar modelo oficial |
|
yolo export model=caminho/para/melhor.pt format=onnx # exportar modelo treinado personalizado |
|
``` |
|
|
|
Os formatos de exportação YOLOv8-pose disponíveis estão na tabela abaixo. Você pode prever ou validar diretamente em modelos exportados, ou seja, `yolo predict model=yolov8n-pose.onnx`. Exemplos de uso são mostrados para o seu modelo após a conclusão da exportação. |
|
|
|
| Formato | Argumento `format` | Modelo | Metadados | Argumentos | |
|
|--------------------------------------------------------------------|--------------------|--------------------------------|-----------|-----------------------------------------------------| |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-pose.pt` | ✅ | - | |
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-pose.torchscript` | ✅ | `imgsz`, `optimize` | |
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-pose.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` | |
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-pose_openvino_model/` | ✅ | `imgsz`, `half` | |
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-pose.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` | |
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-pose.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms` | |
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-pose_saved_model/` | ✅ | `imgsz`, `keras` | |
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-pose.pb` | ❌ | `imgsz` | |
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-pose.tflite` | ✅ | `imgsz`, `half`, `int8` | |
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-pose_edgetpu.tflite` | ✅ | `imgsz` | |
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-pose_web_model/` | ✅ | `imgsz` | |
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-pose_paddle_model/` | ✅ | `imgsz` | |
|
| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n-pose_ncnn_model/` | ✅ | `imgsz`, `half` | |
|
|
|
Veja detalhes completos da `exportação` na página [Exportar](https://docs.ultralytics.com/modes/export/).
|
|
|