You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
621 lines
23 KiB
621 lines
23 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import contextlib |
|
import csv |
|
import urllib |
|
from copy import copy |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import pytest |
|
import torch |
|
import yaml |
|
from PIL import Image |
|
|
|
from tests import CFG, MODEL, SOURCE, SOURCES_LIST, TMP |
|
from ultralytics import RTDETR, YOLO |
|
from ultralytics.cfg import MODELS, TASK2DATA, TASKS |
|
from ultralytics.data.build import load_inference_source |
|
from ultralytics.utils import ( |
|
ASSETS, |
|
DEFAULT_CFG, |
|
DEFAULT_CFG_PATH, |
|
LOGGER, |
|
ONLINE, |
|
ROOT, |
|
WEIGHTS_DIR, |
|
WINDOWS, |
|
checks, |
|
is_dir_writeable, |
|
is_github_action_running, |
|
) |
|
from ultralytics.utils.downloads import download |
|
from ultralytics.utils.torch_utils import TORCH_1_9 |
|
|
|
IS_TMP_WRITEABLE = is_dir_writeable(TMP) # WARNING: must be run once tests start as TMP does not exist on tests/init |
|
|
|
|
|
def test_model_forward(): |
|
"""Test the forward pass of the YOLO model.""" |
|
model = YOLO(CFG) |
|
model(source=None, imgsz=32, augment=True) # also test no source and augment |
|
|
|
|
|
def test_model_methods(): |
|
"""Test various methods and properties of the YOLO model to ensure correct functionality.""" |
|
model = YOLO(MODEL) |
|
|
|
# Model methods |
|
model.info(verbose=True, detailed=True) |
|
model = model.reset_weights() |
|
model = model.load(MODEL) |
|
model.to("cpu") |
|
model.fuse() |
|
model.clear_callback("on_train_start") |
|
model.reset_callbacks() |
|
|
|
# Model properties |
|
_ = model.names |
|
_ = model.device |
|
_ = model.transforms |
|
_ = model.task_map |
|
|
|
|
|
def test_model_profile(): |
|
"""Test profiling of the YOLO model with `profile=True` to assess performance and resource usage.""" |
|
from ultralytics.nn.tasks import DetectionModel |
|
|
|
model = DetectionModel() # build model |
|
im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 |
|
_ = model.predict(im, profile=True) |
|
|
|
|
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
def test_predict_txt(): |
|
"""Tests YOLO predictions with file, directory, and pattern sources listed in a text file.""" |
|
file = TMP / "sources_multi_row.txt" |
|
with open(file, "w") as f: |
|
for src in SOURCES_LIST: |
|
f.write(f"{src}\n") |
|
results = YOLO(MODEL)(source=file, imgsz=32) |
|
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images |
|
|
|
|
|
@pytest.mark.skipif(True, reason="disabled for testing") |
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
def test_predict_csv_multi_row(): |
|
"""Tests YOLO predictions with sources listed in multiple rows of a CSV file.""" |
|
file = TMP / "sources_multi_row.csv" |
|
with open(file, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(["source"]) |
|
writer.writerows([[src] for src in SOURCES_LIST]) |
|
results = YOLO(MODEL)(source=file, imgsz=32) |
|
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images |
|
|
|
|
|
@pytest.mark.skipif(True, reason="disabled for testing") |
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
def test_predict_csv_single_row(): |
|
"""Tests YOLO predictions with sources listed in a single row of a CSV file.""" |
|
file = TMP / "sources_single_row.csv" |
|
with open(file, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(SOURCES_LIST) |
|
results = YOLO(MODEL)(source=file, imgsz=32) |
|
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images |
|
|
|
|
|
@pytest.mark.parametrize("model_name", MODELS) |
|
def test_predict_img(model_name): |
|
"""Test YOLO model predictions on various image input types and sources, including online images.""" |
|
model = YOLO(WEIGHTS_DIR / model_name) |
|
im = cv2.imread(str(SOURCE)) # uint8 numpy array |
|
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL |
|
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray |
|
assert len(model(torch.rand((2, 3, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order |
|
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch |
|
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream |
|
assert len(model(torch.zeros(320, 640, 3).numpy().astype(np.uint8), imgsz=32)) == 1 # tensor to numpy |
|
batch = [ |
|
str(SOURCE), # filename |
|
Path(SOURCE), # Path |
|
"https://github.com/ultralytics/assets/releases/download/v0.0.0/zidane.jpg" if ONLINE else SOURCE, # URI |
|
cv2.imread(str(SOURCE)), # OpenCV |
|
Image.open(SOURCE), # PIL |
|
np.zeros((320, 640, 3), dtype=np.uint8), # numpy |
|
] |
|
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch |
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
def test_predict_visualize(model): |
|
"""Test model prediction methods with 'visualize=True' to generate and display prediction visualizations.""" |
|
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True) |
|
|
|
|
|
def test_predict_grey_and_4ch(): |
|
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images with various filenames.""" |
|
im = Image.open(SOURCE) |
|
directory = TMP / "im4" |
|
directory.mkdir(parents=True, exist_ok=True) |
|
|
|
source_greyscale = directory / "greyscale.jpg" |
|
source_rgba = directory / "4ch.png" |
|
source_non_utf = directory / "non_UTF_测试文件_tést_image.jpg" |
|
source_spaces = directory / "image with spaces.jpg" |
|
|
|
im.convert("L").save(source_greyscale) # greyscale |
|
im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha |
|
im.save(source_non_utf) # non-UTF characters in filename |
|
im.save(source_spaces) # spaces in filename |
|
|
|
# Inference |
|
model = YOLO(MODEL) |
|
for f in source_rgba, source_greyscale, source_non_utf, source_spaces: |
|
for source in Image.open(f), cv2.imread(str(f)), f: |
|
results = model(source, save=True, verbose=True, imgsz=32) |
|
assert len(results) == 1 # verify that an image was run |
|
f.unlink() # cleanup |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
@pytest.mark.skipif(is_github_action_running(), reason="No auth https://github.com/JuanBindez/pytubefix/issues/166") |
|
def test_youtube(): |
|
"""Test YOLO model on a YouTube video stream, handling potential network-related errors.""" |
|
model = YOLO(MODEL) |
|
try: |
|
model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True) |
|
# Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests' |
|
except (urllib.error.HTTPError, ConnectionError) as e: |
|
LOGGER.warning(f"WARNING: YouTube Test Error: {e}") |
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable") |
|
def test_track_stream(): |
|
""" |
|
Tests streaming tracking on a short 10 frame video using ByteTrack tracker and different GMC methods. |
|
|
|
Note imgsz=160 required for tracking for higher confidence and better matches. |
|
""" |
|
video_url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/decelera_portrait_min.mov" |
|
model = YOLO(MODEL) |
|
model.track(video_url, imgsz=160, tracker="bytetrack.yaml") |
|
model.track(video_url, imgsz=160, tracker="botsort.yaml", save_frames=True) # test frame saving also |
|
|
|
# Test Global Motion Compensation (GMC) methods |
|
for gmc in "orb", "sift", "ecc": |
|
with open(ROOT / "cfg/trackers/botsort.yaml", encoding="utf-8") as f: |
|
data = yaml.safe_load(f) |
|
tracker = TMP / f"botsort-{gmc}.yaml" |
|
data["gmc_method"] = gmc |
|
with open(tracker, "w", encoding="utf-8") as f: |
|
yaml.safe_dump(data, f) |
|
model.track(video_url, imgsz=160, tracker=tracker) |
|
|
|
|
|
def test_val(): |
|
"""Test the validation mode of the YOLO model.""" |
|
YOLO(MODEL).val(data="coco8.yaml", imgsz=32, save_hybrid=True) |
|
|
|
|
|
def test_train_scratch(): |
|
"""Test training the YOLO model from scratch using the provided configuration.""" |
|
model = YOLO(CFG) |
|
model.train(data="coco8.yaml", epochs=2, imgsz=32, cache="disk", batch=-1, close_mosaic=1, name="model") |
|
model(SOURCE) |
|
|
|
|
|
def test_train_pretrained(): |
|
"""Test training of the YOLO model starting from a pre-trained checkpoint.""" |
|
model = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") |
|
model.train(data="coco8-seg.yaml", epochs=1, imgsz=32, cache="ram", copy_paste=0.5, mixup=0.5, name=0) |
|
model(SOURCE) |
|
|
|
|
|
def test_all_model_yamls(): |
|
"""Test YOLO model creation for all available YAML configurations in the `cfg/models` directory.""" |
|
for m in (ROOT / "cfg" / "models").rglob("*.yaml"): |
|
if "rtdetr" in m.name: |
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' |
|
_ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 |
|
else: |
|
YOLO(m.name) |
|
|
|
|
|
@pytest.mark.skipif(WINDOWS, reason="Windows slow CI export bug https://github.com/ultralytics/ultralytics/pull/16003") |
|
def test_workflow(): |
|
"""Test the complete workflow including training, validation, prediction, and exporting.""" |
|
model = YOLO(MODEL) |
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, optimizer="SGD") |
|
model.val(imgsz=32) |
|
model.predict(SOURCE, imgsz=32) |
|
model.export(format="torchscript") # WARNING: Windows slow CI export bug |
|
|
|
|
|
def test_predict_callback_and_setup(): |
|
"""Test callback functionality during YOLO prediction setup and execution.""" |
|
|
|
def on_predict_batch_end(predictor): |
|
"""Callback function that handles operations at the end of a prediction batch.""" |
|
path, im0s, _ = predictor.batch |
|
im0s = im0s if isinstance(im0s, list) else [im0s] |
|
bs = [predictor.dataset.bs for _ in range(len(path))] |
|
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size] |
|
|
|
model = YOLO(MODEL) |
|
model.add_callback("on_predict_batch_end", on_predict_batch_end) |
|
|
|
dataset = load_inference_source(source=SOURCE) |
|
bs = dataset.bs # noqa access predictor properties |
|
results = model.predict(dataset, stream=True, imgsz=160) # source already setup |
|
for r, im0, bs in results: |
|
print("test_callback", im0.shape) |
|
print("test_callback", bs) |
|
boxes = r.boxes # Boxes object for bbox outputs |
|
print(boxes) |
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS) |
|
def test_results(model): |
|
"""Ensure YOLO model predictions can be processed and printed in various formats.""" |
|
results = YOLO(WEIGHTS_DIR / model)([SOURCE, SOURCE], imgsz=160) |
|
for r in results: |
|
r = r.cpu().numpy() |
|
print(r, len(r), r.path) # print numpy attributes |
|
r = r.to(device="cpu", dtype=torch.float32) |
|
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True) |
|
r.save_crop(save_dir=TMP / "runs/tests/crops/") |
|
r.tojson(normalize=True) |
|
r.plot(pil=True) |
|
r.plot(conf=True, boxes=True) |
|
print(r, len(r), r.path) # print after methods |
|
|
|
|
|
def test_labels_and_crops(): |
|
"""Test output from prediction args for saving YOLO detection labels and crops; ensures accurate saving.""" |
|
imgs = [SOURCE, ASSETS / "zidane.jpg"] |
|
results = YOLO(WEIGHTS_DIR / "yolov8n.pt")(imgs, imgsz=160, save_txt=True, save_crop=True) |
|
save_path = Path(results[0].save_dir) |
|
for r in results: |
|
im_name = Path(r.path).stem |
|
cls_idxs = r.boxes.cls.int().tolist() |
|
# Check correct detections |
|
assert cls_idxs == ([0, 0, 5, 0, 7] if r.path.endswith("bus.jpg") else [0, 0]) # bus.jpg and zidane.jpg classes |
|
# Check label path |
|
labels = save_path / f"labels/{im_name}.txt" |
|
assert labels.exists() |
|
# Check detections match label count |
|
assert len(r.boxes.data) == len([line for line in labels.read_text().splitlines() if line]) |
|
# Check crops path and files |
|
crop_dirs = list((save_path / "crops").iterdir()) |
|
crop_files = [f for p in crop_dirs for f in p.glob("*")] |
|
# Crop directories match detections |
|
assert all(r.names.get(c) in {d.name for d in crop_dirs} for c in cls_idxs) |
|
# Same number of crops as detections |
|
assert len([f for f in crop_files if im_name in f.name]) == len(r.boxes.data) |
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
def test_data_utils(): |
|
"""Test utility functions in ultralytics/data/utils.py, including dataset stats and auto-splitting.""" |
|
from ultralytics.data.utils import HUBDatasetStats, autosplit |
|
from ultralytics.utils.downloads import zip_directory |
|
|
|
# from ultralytics.utils.files import WorkingDirectory |
|
# with WorkingDirectory(ROOT.parent / 'tests'): |
|
|
|
for task in TASKS: |
|
file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip |
|
download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP) |
|
stats = HUBDatasetStats(TMP / file, task=task) |
|
stats.get_json(save=True) |
|
stats.process_images() |
|
|
|
autosplit(TMP / "coco8") |
|
zip_directory(TMP / "coco8/images/val") # zip |
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
def test_data_converter(): |
|
"""Test dataset conversion functions from COCO to YOLO format and class mappings.""" |
|
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco |
|
|
|
file = "instances_val2017.json" |
|
download(f"https://github.com/ultralytics/assets/releases/download/v0.0.0/{file}", dir=TMP) |
|
convert_coco(labels_dir=TMP, save_dir=TMP / "yolo_labels", use_segments=True, use_keypoints=False, cls91to80=True) |
|
coco80_to_coco91_class() |
|
|
|
|
|
def test_data_annotator(): |
|
"""Automatically annotate data using specified detection and segmentation models.""" |
|
from ultralytics.data.annotator import auto_annotate |
|
|
|
auto_annotate( |
|
ASSETS, |
|
det_model=WEIGHTS_DIR / "yolov8n.pt", |
|
sam_model=WEIGHTS_DIR / "mobile_sam.pt", |
|
output_dir=TMP / "auto_annotate_labels", |
|
) |
|
|
|
|
|
def test_events(): |
|
"""Test event sending functionality.""" |
|
from ultralytics.hub.utils import Events |
|
|
|
events = Events() |
|
events.enabled = True |
|
cfg = copy(DEFAULT_CFG) # does not require deepcopy |
|
cfg.mode = "test" |
|
events(cfg) |
|
|
|
|
|
def test_cfg_init(): |
|
"""Test configuration initialization utilities from the 'ultralytics.cfg' module.""" |
|
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value |
|
|
|
with contextlib.suppress(SyntaxError): |
|
check_dict_alignment({"a": 1}, {"b": 2}) |
|
copy_default_cfg() |
|
(Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False) |
|
[smart_value(x) for x in ["none", "true", "false"]] |
|
|
|
|
|
def test_utils_init(): |
|
"""Test initialization utilities in the Ultralytics library.""" |
|
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_action_running |
|
|
|
get_ubuntu_version() |
|
is_github_action_running() |
|
get_git_origin_url() |
|
get_git_branch() |
|
|
|
|
|
def test_utils_checks(): |
|
"""Test various utility checks for filenames, git status, requirements, image sizes, and versions.""" |
|
checks.check_yolov5u_filename("yolov5n.pt") |
|
checks.git_describe(ROOT) |
|
checks.check_requirements() # check requirements.txt |
|
checks.check_imgsz([600, 600], max_dim=1) |
|
checks.check_imshow(warn=True) |
|
checks.check_version("ultralytics", "8.0.0") |
|
checks.print_args() |
|
|
|
|
|
@pytest.mark.skipif(WINDOWS, reason="Windows profiling is extremely slow (cause unknown)") |
|
def test_utils_benchmarks(): |
|
"""Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'.""" |
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
ProfileModels(["yolov8n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
|
|
def test_utils_torchutils(): |
|
"""Test Torch utility functions including profiling and FLOP calculations.""" |
|
from ultralytics.nn.modules.conv import Conv |
|
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync |
|
|
|
x = torch.randn(1, 64, 20, 20) |
|
m = Conv(64, 64, k=1, s=2) |
|
|
|
profile(x, [m], n=3) |
|
get_flops_with_torch_profiler(m) |
|
time_sync() |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
def test_utils_downloads(): |
|
"""Test file download utilities from ultralytics.utils.downloads.""" |
|
from ultralytics.utils.downloads import get_google_drive_file_info |
|
|
|
get_google_drive_file_info("https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link") |
|
|
|
|
|
def test_utils_ops(): |
|
"""Test utility operations functions for coordinate transformation and normalization.""" |
|
from ultralytics.utils.ops import ( |
|
ltwh2xywh, |
|
ltwh2xyxy, |
|
make_divisible, |
|
xywh2ltwh, |
|
xywh2xyxy, |
|
xywhn2xyxy, |
|
xywhr2xyxyxyxy, |
|
xyxy2ltwh, |
|
xyxy2xywh, |
|
xyxy2xywhn, |
|
xyxyxyxy2xywhr, |
|
) |
|
|
|
make_divisible(17, torch.tensor([8])) |
|
|
|
boxes = torch.rand(10, 4) # xywh |
|
torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) |
|
torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) |
|
torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) |
|
torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) |
|
|
|
boxes = torch.rand(10, 5) # xywhr for OBB |
|
boxes[:, 4] = torch.randn(10) * 30 |
|
torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) |
|
|
|
|
|
def test_utils_files(): |
|
"""Test file handling utilities including file age, date, and paths with spaces.""" |
|
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path |
|
|
|
file_age(SOURCE) |
|
file_date(SOURCE) |
|
get_latest_run(ROOT / "runs") |
|
|
|
path = TMP / "path/with spaces" |
|
path.mkdir(parents=True, exist_ok=True) |
|
with spaces_in_path(path) as new_path: |
|
print(new_path) |
|
|
|
|
|
@pytest.mark.slow |
|
def test_utils_patches_torch_save(): |
|
"""Test torch_save backoff when _torch_save raises RuntimeError to ensure robustness.""" |
|
from unittest.mock import MagicMock, patch |
|
|
|
from ultralytics.utils.patches import torch_save |
|
|
|
mock = MagicMock(side_effect=RuntimeError) |
|
|
|
with patch("ultralytics.utils.patches._torch_save", new=mock): |
|
with pytest.raises(RuntimeError): |
|
torch_save(torch.zeros(1), TMP / "test.pt") |
|
|
|
assert mock.call_count == 4, "torch_save was not attempted the expected number of times" |
|
|
|
|
|
def test_nn_modules_conv(): |
|
"""Test Convolutional Neural Network modules including CBAM, Conv2, and ConvTranspose.""" |
|
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus |
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
x = torch.zeros(4, c1, 10, 10) # BCHW |
|
|
|
# Run all modules not otherwise covered in tests |
|
DWConvTranspose2d(c1, c2)(x) |
|
ConvTranspose(c1, c2)(x) |
|
Focus(c1, c2)(x) |
|
CBAM(c1)(x) |
|
|
|
# Fuse ops |
|
m = Conv2(c1, c2) |
|
m.fuse_convs() |
|
m(x) |
|
|
|
|
|
def test_nn_modules_block(): |
|
"""Test various blocks in neural network modules including C1, C3TR, BottleneckCSP, C3Ghost, and C3x.""" |
|
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x |
|
|
|
c1, c2 = 8, 16 # input and output channels |
|
x = torch.zeros(4, c1, 10, 10) # BCHW |
|
|
|
# Run all modules not otherwise covered in tests |
|
C1(c1, c2)(x) |
|
C3x(c1, c2)(x) |
|
C3TR(c1, c2)(x) |
|
C3Ghost(c1, c2)(x) |
|
BottleneckCSP(c1, c2)(x) |
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
def test_hub(): |
|
"""Test Ultralytics HUB functionalities (e.g. export formats, logout).""" |
|
from ultralytics.hub import export_fmts_hub, logout |
|
from ultralytics.hub.utils import smart_request |
|
|
|
export_fmts_hub() |
|
logout() |
|
smart_request("GET", "https://github.com", progress=True) |
|
|
|
|
|
@pytest.fixture |
|
def image(): |
|
"""Load and return an image from a predefined source using OpenCV.""" |
|
return cv2.imread(str(SOURCE)) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"auto_augment, erasing, force_color_jitter", |
|
[ |
|
(None, 0.0, False), |
|
("randaugment", 0.5, True), |
|
("augmix", 0.2, False), |
|
("autoaugment", 0.0, True), |
|
], |
|
) |
|
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter): |
|
"""Tests classification transforms during training with various augmentations to ensure proper functionality.""" |
|
from ultralytics.data.augment import classify_augmentations |
|
|
|
transform = classify_augmentations( |
|
size=224, |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
scale=(0.08, 1.0), |
|
ratio=(3.0 / 4.0, 4.0 / 3.0), |
|
hflip=0.5, |
|
vflip=0.5, |
|
auto_augment=auto_augment, |
|
hsv_h=0.015, |
|
hsv_s=0.4, |
|
hsv_v=0.4, |
|
force_color_jitter=force_color_jitter, |
|
erasing=erasing, |
|
) |
|
|
|
transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))) |
|
|
|
assert transformed_image.shape == (3, 224, 224) |
|
assert torch.is_tensor(transformed_image) |
|
assert transformed_image.dtype == torch.float32 |
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.skipif(not ONLINE, reason="environment is offline") |
|
def test_model_tune(): |
|
"""Tune YOLO model for performance improvement.""" |
|
YOLO("yolov8n-pose.pt").tune(data="coco8-pose.yaml", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
YOLO("yolov8n-cls.pt").tune(data="imagenet10", plots=False, imgsz=32, epochs=1, iterations=2, device="cpu") |
|
|
|
|
|
def test_model_embeddings(): |
|
"""Test YOLO model embeddings.""" |
|
model_detect = YOLO(MODEL) |
|
model_segment = YOLO(WEIGHTS_DIR / "yolov8n-seg.pt") |
|
|
|
for batch in [SOURCE], [SOURCE, SOURCE]: # test batch size 1 and 2 |
|
assert len(model_detect.embed(source=batch, imgsz=32)) == len(batch) |
|
assert len(model_segment.embed(source=batch, imgsz=32)) == len(batch) |
|
|
|
|
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="YOLOWorld with CLIP is not supported in Python 3.12") |
|
def test_yolo_world(): |
|
"""Tests YOLO world models with CLIP support, including detection and training scenarios.""" |
|
model = YOLO("yolov8s-world.pt") # no YOLOv8n-world model yet |
|
model.set_classes(["tree", "window"]) |
|
model(SOURCE, conf=0.01) |
|
|
|
model = YOLO("yolov8s-worldv2.pt") # no YOLOv8n-world model yet |
|
# Training from a pretrained model. Eval is included at the final stage of training. |
|
# Use dota8.yaml which has fewer categories to reduce the inference time of CLIP model |
|
model.train( |
|
data="dota8.yaml", |
|
epochs=1, |
|
imgsz=32, |
|
cache="disk", |
|
close_mosaic=1, |
|
) |
|
|
|
# test WorWorldTrainerFromScratch |
|
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch |
|
|
|
model = YOLO("yolov8s-worldv2.yaml") # no YOLOv8n-world model yet |
|
model.train( |
|
data={"train": {"yolo_data": ["dota8.yaml"]}, "val": {"yolo_data": ["dota8.yaml"]}}, |
|
epochs=1, |
|
imgsz=32, |
|
cache="disk", |
|
close_mosaic=1, |
|
trainer=WorldTrainerFromScratch, |
|
) |
|
|
|
|
|
def test_yolov10(): |
|
"""Test YOLOv10 model training, validation, and prediction steps with minimal configurations.""" |
|
model = YOLO("yolov10n.yaml") |
|
# train/val/predict |
|
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk") |
|
model.val(data="coco8.yaml", imgsz=32) |
|
model.predict(imgsz=32, save_txt=True, save_crop=True, augment=True) |
|
model(SOURCE)
|
|
|