You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
5.5 KiB
193 lines
5.5 KiB
#include <iostream> |
|
#include <iomanip> |
|
#include "inference.h" |
|
#include <filesystem> |
|
#include <fstream> |
|
#include <random> |
|
|
|
void Detector(YOLO_V8*& p) { |
|
std::filesystem::path current_path = std::filesystem::current_path(); |
|
std::filesystem::path imgs_path = current_path / "images"; |
|
for (auto& i : std::filesystem::directory_iterator(imgs_path)) |
|
{ |
|
if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") |
|
{ |
|
std::string img_path = i.path().string(); |
|
cv::Mat img = cv::imread(img_path); |
|
std::vector<DL_RESULT> res; |
|
p->RunSession(img, res); |
|
|
|
for (auto& re : res) |
|
{ |
|
cv::RNG rng(cv::getTickCount()); |
|
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)); |
|
|
|
cv::rectangle(img, re.box, color, 3); |
|
|
|
float confidence = floor(100 * re.confidence) / 100; |
|
std::cout << std::fixed << std::setprecision(2); |
|
std::string label = p->classes[re.classId] + " " + |
|
std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4); |
|
|
|
cv::rectangle( |
|
img, |
|
cv::Point(re.box.x, re.box.y - 25), |
|
cv::Point(re.box.x + label.length() * 15, re.box.y), |
|
color, |
|
cv::FILLED |
|
); |
|
|
|
cv::putText( |
|
img, |
|
label, |
|
cv::Point(re.box.x, re.box.y - 5), |
|
cv::FONT_HERSHEY_SIMPLEX, |
|
0.75, |
|
cv::Scalar(0, 0, 0), |
|
2 |
|
); |
|
|
|
|
|
} |
|
std::cout << "Press any key to exit" << std::endl; |
|
cv::imshow("Result of Detection", img); |
|
cv::waitKey(0); |
|
cv::destroyAllWindows(); |
|
} |
|
} |
|
} |
|
|
|
|
|
void Classifier(YOLO_V8*& p) |
|
{ |
|
std::filesystem::path current_path = std::filesystem::current_path(); |
|
std::filesystem::path imgs_path = current_path;// / "images" |
|
std::random_device rd; |
|
std::mt19937 gen(rd()); |
|
std::uniform_int_distribution<int> dis(0, 255); |
|
for (auto& i : std::filesystem::directory_iterator(imgs_path)) |
|
{ |
|
if (i.path().extension() == ".jpg" || i.path().extension() == ".png") |
|
{ |
|
std::string img_path = i.path().string(); |
|
//std::cout << img_path << std::endl; |
|
cv::Mat img = cv::imread(img_path); |
|
std::vector<DL_RESULT> res; |
|
char* ret = p->RunSession(img, res); |
|
|
|
float positionY = 50; |
|
for (int i = 0; i < res.size(); i++) |
|
{ |
|
int r = dis(gen); |
|
int g = dis(gen); |
|
int b = dis(gen); |
|
cv::putText(img, std::to_string(i) + ":", cv::Point(10, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2); |
|
cv::putText(img, std::to_string(res.at(i).confidence), cv::Point(70, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2); |
|
positionY += 50; |
|
} |
|
|
|
cv::imshow("TEST_CLS", img); |
|
cv::waitKey(0); |
|
cv::destroyAllWindows(); |
|
//cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img); |
|
} |
|
|
|
} |
|
} |
|
|
|
|
|
|
|
int ReadCocoYaml(YOLO_V8*& p) { |
|
// Open the YAML file |
|
std::ifstream file("coco.yaml"); |
|
if (!file.is_open()) |
|
{ |
|
std::cerr << "Failed to open file" << std::endl; |
|
return 1; |
|
} |
|
|
|
// Read the file line by line |
|
std::string line; |
|
std::vector<std::string> lines; |
|
while (std::getline(file, line)) |
|
{ |
|
lines.push_back(line); |
|
} |
|
|
|
// Find the start and end of the names section |
|
std::size_t start = 0; |
|
std::size_t end = 0; |
|
for (std::size_t i = 0; i < lines.size(); i++) |
|
{ |
|
if (lines[i].find("names:") != std::string::npos) |
|
{ |
|
start = i + 1; |
|
} |
|
else if (start > 0 && lines[i].find(':') == std::string::npos) |
|
{ |
|
end = i; |
|
break; |
|
} |
|
} |
|
|
|
// Extract the names |
|
std::vector<std::string> names; |
|
for (std::size_t i = start; i < end; i++) |
|
{ |
|
std::stringstream ss(lines[i]); |
|
std::string name; |
|
std::getline(ss, name, ':'); // Extract the number before the delimiter |
|
std::getline(ss, name); // Extract the string after the delimiter |
|
names.push_back(name); |
|
} |
|
|
|
p->classes = names; |
|
return 0; |
|
} |
|
|
|
|
|
void DetectTest() |
|
{ |
|
YOLO_V8* yoloDetector = new YOLO_V8; |
|
ReadCocoYaml(yoloDetector); |
|
DL_INIT_PARAM params; |
|
params.rectConfidenceThreshold = 0.1; |
|
params.iouThreshold = 0.5; |
|
params.modelPath = "yolov8n.onnx"; |
|
params.imgSize = { 640, 640 }; |
|
#ifdef USE_CUDA |
|
params.cudaEnable = true; |
|
|
|
// GPU FP32 inference |
|
params.modelType = YOLO_DETECT_V8; |
|
// GPU FP16 inference |
|
//Note: change fp16 onnx model |
|
//params.modelType = YOLO_DETECT_V8_HALF; |
|
|
|
#else |
|
// CPU inference |
|
params.modelType = YOLO_DETECT_V8; |
|
params.cudaEnable = false; |
|
|
|
#endif |
|
yoloDetector->CreateSession(params); |
|
Detector(yoloDetector); |
|
} |
|
|
|
|
|
void ClsTest() |
|
{ |
|
YOLO_V8* yoloDetector = new YOLO_V8; |
|
std::string model_path = "cls.onnx"; |
|
ReadCocoYaml(yoloDetector); |
|
DL_INIT_PARAM params{ model_path, YOLO_CLS, {224, 224} }; |
|
yoloDetector->CreateSession(params); |
|
Classifier(yoloDetector); |
|
} |
|
|
|
|
|
int main() |
|
{ |
|
//DetectTest(); |
|
ClsTest(); |
|
}
|
|
|