You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

12 KiB

comments description keywords
true Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration. Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration

Ultralytics HUB Inference API

The Ultralytics HUB Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally.

Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Ultralytics Inference API card


Watch: Ultralytics HUB Inference API Walkthrough

Python

To access the Ultralytics HUB Inference API using Python, use the following code:

import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())

!!! note "Note"

Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.

cURL

To access the Ultralytics HUB Inference API using cURL, use the following code:

curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
	-H "x-api-key: API_KEY" \
	-F "image=@/path/to/image.jpg" \
	-F "size=640" \
	-F "confidence=0.25" \
	-F "iou=0.45"

!!! note "Note"

Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.

Arguments

See the table below for a full list of available inference arguments.

Argument Default Type Description
image image Image file to be used for inference.
url str URL of the image if not passing a file.
size 640 int Size of the input image, valid range is 32 - 1280 pixels.
confidence 0.25 float Confidence threshold for predictions, valid range 0.01 - 1.0.
iou 0.45 float Intersection over Union (IoU) threshold, valid range 0.0 - 0.95.

Response

The Ultralytics HUB Inference API returns a JSON response.

Classification

!!! Example "Classification Model"

=== "`ultralytics`"

    ```python
    from ultralytics import YOLO

    # Load model
    model = YOLO("yolov8n-cls.pt")

    # Run inference
    results = model("image.jpg")

    # Print image.jpg results in JSON format
    print(results[0].tojson())
    ```

=== "cURL"

    ```bash
    curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
        -H "x-api-key: API_KEY" \
        -F "image=@/path/to/image.jpg" \
        -F "size=640" \
        -F "confidence=0.25" \
        -F "iou=0.45"
    ```

=== "Python"

    ```python
    import requests

    # API URL, use actual MODEL_ID
    url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

    # Headers, use actual API_KEY
    headers = {"x-api-key": "API_KEY"}

    # Inference arguments (optional)
    data = {"size": 640, "confidence": 0.25, "iou": 0.45}

    # Load image and send request
    with open("path/to/image.jpg", "rb") as image_file:
        files = {"image": image_file}
        response = requests.post(url, headers=headers, files=files, data=data)

    print(response.json())
    ```

=== "Response"

    ```json
    {
      success: true,
      message: "Inference complete.",
      data: [
        {
          class: 0,
          name: "person",
          confidence: 0.92
        }
      ]
    }
    ```

Detection

!!! Example "Detection Model"

=== "`ultralytics`"

    ```python
    from ultralytics import YOLO

    # Load model
    model = YOLO("yolov8n.pt")

    # Run inference
    results = model("image.jpg")

    # Print image.jpg results in JSON format
    print(results[0].tojson())
    ```

=== "cURL"

    ```bash
    curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
        -H "x-api-key: API_KEY" \
        -F "image=@/path/to/image.jpg" \
        -F "size=640" \
        -F "confidence=0.25" \
        -F "iou=0.45"
    ```

=== "Python"

    ```python
    import requests

    # API URL, use actual MODEL_ID
    url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

    # Headers, use actual API_KEY
    headers = {"x-api-key": "API_KEY"}

    # Inference arguments (optional)
    data = {"size": 640, "confidence": 0.25, "iou": 0.45}

    # Load image and send request
    with open("path/to/image.jpg", "rb") as image_file:
        files = {"image": image_file}
        response = requests.post(url, headers=headers, files=files, data=data)

    print(response.json())
    ```

=== "Response"

    ```json
    {
      success: true,
      message: "Inference complete.",
      data: [
        {
          class: 0,
          name: "person",
          confidence: 0.92,
          width: 0.4893378019332886,
          height: 0.7437513470649719,
          xcenter: 0.4434437155723572,
          ycenter: 0.5198975801467896
        }
      ]
    }
    ```

OBB

!!! Example "OBB Model"

=== "`ultralytics`"

    ```python
    from ultralytics import YOLO

    # Load model
    model = YOLO("yolov8n-obb.pt")

    # Run inference
    results = model("image.jpg")

    # Print image.jpg results in JSON format
    print(results[0].tojson())
    ```

=== "cURL"

    ```bash
    curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
        -H "x-api-key: API_KEY" \
        -F "image=@/path/to/image.jpg" \
        -F "size=640" \
        -F "confidence=0.25" \
        -F "iou=0.45"
    ```

=== "Python"

    ```python
    import requests

    # API URL, use actual MODEL_ID
    url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

    # Headers, use actual API_KEY
    headers = {"x-api-key": "API_KEY"}

    # Inference arguments (optional)
    data = {"size": 640, "confidence": 0.25, "iou": 0.45}

    # Load image and send request
    with open("path/to/image.jpg", "rb") as image_file:
        files = {"image": image_file}
        response = requests.post(url, headers=headers, files=files, data=data)

    print(response.json())
    ```

=== "Response"

    ```json
    {
      success: true,
      message: "Inference complete.",
      data: [
        {
          class: 0,
          name: "person",
          confidence: 0.92,
          obb: [
            0.669310450553894,
            0.6247171759605408,
            0.9847468137741089,
            ...
          ]
        }
      ]
    }
    ```

Segmentation

!!! Example "Segmentation Model"

=== "`ultralytics`"

    ```python
    from ultralytics import YOLO

    # Load model
    model = YOLO("yolov8n-seg.pt")

    # Run inference
    results = model("image.jpg")

    # Print image.jpg results in JSON format
    print(results[0].tojson())
    ```

=== "cURL"

    ```bash
    curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
        -H "x-api-key: API_KEY" \
        -F "image=@/path/to/image.jpg" \
        -F "size=640" \
        -F "confidence=0.25" \
        -F "iou=0.45"
    ```

=== "Python"

    ```python
    import requests

    # API URL, use actual MODEL_ID
    url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

    # Headers, use actual API_KEY
    headers = {"x-api-key": "API_KEY"}

    # Inference arguments (optional)
    data = {"size": 640, "confidence": 0.25, "iou": 0.45}

    # Load image and send request
    with open("path/to/image.jpg", "rb") as image_file:
        files = {"image": image_file}
        response = requests.post(url, headers=headers, files=files, data=data)

    print(response.json())
    ```

=== "Response"

    ```json
    {
      success: true,
      message: "Inference complete.",
      data: [
        {
          class: 0,
          name: "person",
          confidence: 0.92,
          segment: [0.44140625, 0.15625, 0.439453125, ...]
        }
      ]
    }
    ```

Pose

!!! Example "Pose Model"

=== "`ultralytics`"

    ```python
    from ultralytics import YOLO

    # Load model
    model = YOLO("yolov8n-pose.pt")

    # Run inference
    results = model("image.jpg")

    # Print image.jpg results in JSON format
    print(results[0].tojson())
    ```

=== "cURL"

    ```bash
    curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
        -H "x-api-key: API_KEY" \
        -F "image=@/path/to/image.jpg" \
        -F "size=640" \
        -F "confidence=0.25" \
        -F "iou=0.45"
    ```

=== "Python"

    ```python
    import requests

    # API URL, use actual MODEL_ID
    url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

    # Headers, use actual API_KEY
    headers = {"x-api-key": "API_KEY"}

    # Inference arguments (optional)
    data = {"size": 640, "confidence": 0.25, "iou": 0.45}

    # Load image and send request
    with open("path/to/image.jpg", "rb") as image_file:
        files = {"image": image_file}
        response = requests.post(url, headers=headers, files=files, data=data)

    print(response.json())
    ```

=== "Response"

    ```json
    {
      success: true,
      message: "Inference complete.",
      data: [
        {
          class: 0,
          name: "person",
          confidence: 0.92,
          keypoints: [
            0.5290805697441101,
            0.20698919892311096,
            1.0,
            0.5263055562973022,
            0.19584226608276367,
            1.0,
            0.5094948410987854,
            0.19120082259178162,
            1.0,
            ...
          ]
        }
      ]
    }
    ```