You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

268 lines
12 KiB

---
comments: true
description: Learn to create line graphs, bar plots, and pie charts using Python with guided instructions and code snippets. Maximize your data visualization skills!.
keywords: Ultralytics, YOLOv8, data visualization, line graphs, bar plots, pie charts, Python, analytics, tutorial, guide
---
# Analytics using Ultralytics YOLOv8 📊
## Introduction
This guide provides a comprehensive overview of three fundamental types of data visualizations: line graphs, bar plots, and pie charts. Each section includes step-by-step instructions and code snippets on how to create these visualizations using Python.
### Visual Samples
| Line Graph | Bar Plot | Pie Chart |
|:------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|
| ![Line Graph](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/eeabd90c-04fd-4e5b-aac9-c7777f892200) | ![Bar Plot](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/c1da2d6a-99ff-43a8-b5dc-ca93127917f8) | ![Pie Chart](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/9d8acce6-d9e4-4685-949d-cd4851483187) |
### Why Graphs are Important
- Line graphs are ideal for tracking changes over short and long periods and for comparing changes for multiple groups over the same period.
- Bar plots, on the other hand, are suitable for comparing quantities across different categories and showing relationships between a category and its numerical value.
- Lastly, pie charts are effective for illustrating proportions among categories and showing parts of a whole.
!!! Analytics "Analytics Examples"
=== "Line Graph"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter("line_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
analytics = solutions.Analytics(
type="line",
writer=out,
im0_shape=(w, h),
view_img=True,
)
total_counts = 0
frame_count = 0
while cap.isOpened():
success, frame = cap.read()
if success:
frame_count += 1
results = model.track(frame, persist=True, verbose=True)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
for box in boxes:
total_counts += 1
analytics.update_line(frame_count, total_counts)
total_counts = 0
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()
```
=== "Multiple Lines"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter("multiple_line_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
analytics = solutions.Analytics(
type="line",
writer=out,
im0_shape=(w, h),
view_img=True,
max_points=200,
)
frame_count = 0
data = {}
labels = []
while cap.isOpened():
success, frame = cap.read()
if success:
frame_count += 1
results = model.track(frame, persist=True)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
track_ids = results[0].boxes.id.int().cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
for box, track_id, cls in zip(boxes, track_ids, clss):
# Store each class label
if model.names[int(cls)] not in labels:
labels.append(model.names[int(cls)])
# Store each class count
if model.names[int(cls)] in data:
data[model.names[int(cls)]] += 1
else:
data[model.names[int(cls)]] = 0
# update lines every frame
analytics.update_multiple_lines(data, labels, frame_count)
data = {} # clear the data list for next frame
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()
```
=== "Pie Chart"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter("pie_chart.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
analytics = solutions.Analytics(
type="pie",
writer=out,
im0_shape=(w, h),
view_img=True,
)
clswise_count = {}
while cap.isOpened():
success, frame = cap.read()
if success:
results = model.track(frame, persist=True, verbose=True)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
if model.names[int(cls)] in clswise_count:
clswise_count[model.names[int(cls)]] += 1
else:
clswise_count[model.names[int(cls)]] = 1
analytics.update_pie(clswise_count)
clswise_count = {}
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()
```
=== "Bar Plot"
```python
import cv2
from ultralytics import YOLO, solutions
model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter("bar_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
analytics = solutions.Analytics(
type="bar",
writer=out,
im0_shape=(w, h),
view_img=True,
)
clswise_count = {}
while cap.isOpened():
success, frame = cap.read()
if success:
results = model.track(frame, persist=True, verbose=True)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
for box, cls in zip(boxes, clss):
if model.names[int(cls)] in clswise_count:
clswise_count[model.names[int(cls)]] += 1
else:
clswise_count[model.names[int(cls)]] = 1
analytics.update_bar(clswise_count)
clswise_count = {}
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
cap.release()
out.release()
cv2.destroyAllWindows()
```
### Argument `Analytics`
Here's a table with the `Analytics` arguments:
| Name | Type | Default | Description |
|--------------|-------------------|---------------|----------------------------------------------------------------------------------|
| `type` | `str` | `None` | Type of data or object. |
| `im0_shape` | `tuple` | `None` | Shape of the initial image. |
| `writer` | `cv2.VideoWriter` | `None` | Object for writing video files. |
| `title` | `str` | `ultralytics` | Title for the visualization. |
| `x_label` | `str` | `x` | Label for the x-axis. |
| `y_label` | `str` | `y` | Label for the y-axis. |
| `bg_color` | `str` | `white` | Background color. |
| `fg_color` | `str` | `black` | Foreground color. |
| `line_color` | `str` | `yellow` | Color of the lines. |
| `line_width` | `int` | `2` | Width of the lines. |
| `fontsize` | `int` | `13` | Font size for text. |
| `view_img` | `bool` | `False` | Flag to display the image or video. |
| `save_img` | `bool` | `True` | Flag to save the image or video. |
| `max_points` | `int` | `50` | For multiple lines, total points drawn on frame, before deleting initial points. |
### Arguments `model.track`
| Name | Type | Default | Description |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source` | `im0` | `None` | source directory for images or videos |
| `persist` | `bool` | `False` | persisting tracks between frames |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
| `conf` | `float` | `0.3` | Confidence Threshold |
| `iou` | `float` | `0.5` | IOU Threshold |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool` | `True` | Display the object tracking results |
## Conclusion
Understanding when and how to use different types of visualizations is crucial for effective data analysis. Line graphs, bar plots, and pie charts are fundamental tools that can help you convey your data's story more clearly and effectively.