|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
"""Model validation metrics.""" |
|
|
|
|
|
import math |
|
|
import warnings |
|
|
from pathlib import Path |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from ultralytics.utils import LOGGER, SimpleClass, TryExcept, plt_settings |
|
|
|
|
|
OKS_SIGMA = ( |
|
|
np.array([0.26, 0.25, 0.25, 0.35, 0.35, 0.79, 0.79, 0.72, 0.72, 0.62, 0.62, 1.07, 1.07, 0.87, 0.87, 0.89, 0.89]) |
|
|
/ 10.0 |
|
|
) |
|
|
|
|
|
|
|
|
def bbox_ioa(box1, box2, iou=False, eps=1e-7): |
|
|
""" |
|
|
Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format. |
|
|
|
|
|
Args: |
|
|
box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes. |
|
|
box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes. |
|
|
iou (bool): Calculate the standard iou if True else return inter_area/box2_area. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(np.array): A numpy array of shape (n, m) representing the intersection over box2 area. |
|
|
""" |
|
|
|
|
|
# Get the coordinates of bounding boxes |
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T |
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T |
|
|
|
|
|
# Intersection area |
|
|
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * ( |
|
|
np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1) |
|
|
).clip(0) |
|
|
|
|
|
# Box2 area |
|
|
area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) |
|
|
if iou: |
|
|
box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) |
|
|
area = area + box1_area[:, None] - inter_area |
|
|
|
|
|
# Intersection over box2 area |
|
|
return inter_area / (area + eps) |
|
|
|
|
|
|
|
|
def box_iou(box1, box2, eps=1e-7): |
|
|
""" |
|
|
Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. |
|
|
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py |
|
|
|
|
|
Args: |
|
|
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes. |
|
|
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2. |
|
|
""" |
|
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) |
|
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) |
|
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2) |
|
|
|
|
|
# IoU = inter / (area1 + area2 - inter) |
|
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) |
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): |
|
|
""" |
|
|
Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4). |
|
|
|
|
|
Args: |
|
|
box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4). |
|
|
box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4). |
|
|
xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in |
|
|
(x1, y1, x2, y2) format. Defaults to True. |
|
|
GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False. |
|
|
DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False. |
|
|
CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags. |
|
|
""" |
|
|
|
|
|
# Get the coordinates of bounding boxes |
|
|
if xywh: # transform from xywh to xyxy |
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) |
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 |
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ |
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ |
|
|
else: # x1, y1, x2, y2 = box1 |
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) |
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) |
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
|
|
|
|
# Intersection area |
|
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * ( |
|
|
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) |
|
|
).clamp_(0) |
|
|
|
|
|
# Union Area |
|
|
union = w1 * h1 + w2 * h2 - inter + eps |
|
|
|
|
|
# IoU |
|
|
iou = inter / union |
|
|
if CIoU or DIoU or GIoU: |
|
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width |
|
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height |
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 |
|
|
c2 = cw**2 + ch**2 + eps # convex diagonal squared |
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 |
|
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 |
|
|
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) |
|
|
with torch.no_grad(): |
|
|
alpha = v / (v - iou + (1 + eps)) |
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU |
|
|
return iou - rho2 / c2 # DIoU |
|
|
c_area = cw * ch + eps # convex area |
|
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf |
|
|
return iou # IoU |
|
|
|
|
|
|
|
|
def mask_iou(mask1, mask2, eps=1e-7): |
|
|
""" |
|
|
Calculate masks IoU. |
|
|
|
|
|
Args: |
|
|
mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the |
|
|
product of image width and height. |
|
|
mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the |
|
|
product of image width and height. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): A tensor of shape (N, M) representing masks IoU. |
|
|
""" |
|
|
intersection = torch.matmul(mask1, mask2.T).clamp_(0) |
|
|
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection |
|
|
return intersection / (union + eps) |
|
|
|
|
|
|
|
|
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7): |
|
|
""" |
|
|
Calculate Object Keypoint Similarity (OKS). |
|
|
|
|
|
Args: |
|
|
kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints. |
|
|
kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints. |
|
|
area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth. |
|
|
sigma (list): A list containing 17 values representing keypoint scales. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): A tensor of shape (N, M) representing keypoint similarities. |
|
|
""" |
|
|
d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17) |
|
|
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, ) |
|
|
kpt_mask = kpt1[..., 2] != 0 # (N, 17) |
|
|
e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval |
|
|
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula |
|
|
return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps) |
|
|
|
|
|
|
|
|
def _get_covariance_matrix(boxes): |
|
|
""" |
|
|
Generating covariance matrix from obbs. |
|
|
|
|
|
Args: |
|
|
boxes (torch.Tensor): A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): Covariance metrixs corresponding to original rotated bounding boxes. |
|
|
""" |
|
|
# Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here. |
|
|
gbbs = torch.cat((torch.pow(boxes[:, 2:4], 2) / 12, boxes[:, 4:]), dim=-1) |
|
|
a, b, c = gbbs.split(1, dim=-1) |
|
|
return ( |
|
|
a * torch.cos(c) ** 2 + b * torch.sin(c) ** 2, |
|
|
a * torch.sin(c) ** 2 + b * torch.cos(c) ** 2, |
|
|
a * torch.cos(c) * torch.sin(c) - b * torch.sin(c) * torch.cos(c), |
|
|
) |
|
|
|
|
|
|
|
|
def probiou(obb1, obb2, CIoU=False, eps=1e-7): |
|
|
""" |
|
|
Calculate the prob iou between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf. |
|
|
|
|
|
Args: |
|
|
obb1 (torch.Tensor): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. |
|
|
obb2 (torch.Tensor): A tensor of shape (N, 5) representing predicted obbs, with xywhr format. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): A tensor of shape (N, ) representing obb similarities. |
|
|
""" |
|
|
x1, y1 = obb1[..., :2].split(1, dim=-1) |
|
|
x2, y2 = obb2[..., :2].split(1, dim=-1) |
|
|
a1, b1, c1 = _get_covariance_matrix(obb1) |
|
|
a2, b2, c2 = _get_covariance_matrix(obb2) |
|
|
|
|
|
t1 = ( |
|
|
((a1 + a2) * (torch.pow(y1 - y2, 2)) + (b1 + b2) * (torch.pow(x1 - x2, 2))) |
|
|
/ ((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2)) + eps) |
|
|
) * 0.25 |
|
|
t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2)) + eps)) * 0.5 |
|
|
t3 = ( |
|
|
torch.log( |
|
|
((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2))) |
|
|
/ (4 * torch.sqrt((a1 * b1 - torch.pow(c1, 2)).clamp_(0) * (a2 * b2 - torch.pow(c2, 2)).clamp_(0)) + eps) |
|
|
+ eps |
|
|
) |
|
|
* 0.5 |
|
|
) |
|
|
bd = t1 + t2 + t3 |
|
|
bd = torch.clamp(bd, eps, 100.0) |
|
|
hd = torch.sqrt(1.0 - torch.exp(-bd) + eps) |
|
|
iou = 1 - hd |
|
|
if CIoU: # only include the wh aspect ratio part |
|
|
w1, h1 = obb1[..., 2:4].split(1, dim=-1) |
|
|
w2, h2 = obb2[..., 2:4].split(1, dim=-1) |
|
|
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) |
|
|
with torch.no_grad(): |
|
|
alpha = v / (v - iou + (1 + eps)) |
|
|
return iou - v * alpha # CIoU |
|
|
return iou |
|
|
|
|
|
|
|
|
def batch_probiou(obb1, obb2, eps=1e-7): |
|
|
""" |
|
|
Calculate the prob iou between oriented bounding boxes, https://arxiv.org/pdf/2106.06072v1.pdf. |
|
|
|
|
|
Args: |
|
|
obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. |
|
|
obb2 (torch.Tensor | np.ndarray): A tensor of shape (M, 5) representing predicted obbs, with xywhr format. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. |
|
|
|
|
|
Returns: |
|
|
(torch.Tensor): A tensor of shape (N, M) representing obb similarities. |
|
|
""" |
|
|
obb1 = torch.from_numpy(obb1) if isinstance(obb1, np.ndarray) else obb1 |
|
|
obb2 = torch.from_numpy(obb2) if isinstance(obb2, np.ndarray) else obb2 |
|
|
|
|
|
x1, y1 = obb1[..., :2].split(1, dim=-1) |
|
|
x2, y2 = (x.squeeze(-1)[None] for x in obb2[..., :2].split(1, dim=-1)) |
|
|
a1, b1, c1 = _get_covariance_matrix(obb1) |
|
|
a2, b2, c2 = (x.squeeze(-1)[None] for x in _get_covariance_matrix(obb2)) |
|
|
|
|
|
t1 = ( |
|
|
((a1 + a2) * (torch.pow(y1 - y2, 2)) + (b1 + b2) * (torch.pow(x1 - x2, 2))) |
|
|
/ ((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2)) + eps) |
|
|
) * 0.25 |
|
|
t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2)) + eps)) * 0.5 |
|
|
t3 = ( |
|
|
torch.log( |
|
|
((a1 + a2) * (b1 + b2) - (torch.pow(c1 + c2, 2))) |
|
|
/ (4 * torch.sqrt((a1 * b1 - torch.pow(c1, 2)).clamp_(0) * (a2 * b2 - torch.pow(c2, 2)).clamp_(0)) + eps) |
|
|
+ eps |
|
|
) |
|
|
* 0.5 |
|
|
) |
|
|
bd = t1 + t2 + t3 |
|
|
bd = torch.clamp(bd, eps, 100.0) |
|
|
hd = torch.sqrt(1.0 - torch.exp(-bd) + eps) |
|
|
return 1 - hd |
|
|
|
|
|
|
|
|
def smooth_BCE(eps=0.1): |
|
|
""" |
|
|
Computes smoothed positive and negative Binary Cross-Entropy targets. |
|
|
|
|
|
This function calculates positive and negative label smoothing BCE targets based on a given epsilon value. |
|
|
For implementation details, refer to https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441. |
|
|
|
|
|
Args: |
|
|
eps (float, optional): The epsilon value for label smoothing. Defaults to 0.1. |
|
|
|
|
|
Returns: |
|
|
(tuple): A tuple containing the positive and negative label smoothing BCE targets. |
|
|
""" |
|
|
return 1.0 - 0.5 * eps, 0.5 * eps |
|
|
|
|
|
|
|
|
class ConfusionMatrix: |
|
|
""" |
|
|
A class for calculating and updating a confusion matrix for object detection and classification tasks. |
|
|
|
|
|
Attributes: |
|
|
task (str): The type of task, either 'detect' or 'classify'. |
|
|
matrix (np.array): The confusion matrix, with dimensions depending on the task. |
|
|
nc (int): The number of classes. |
|
|
conf (float): The confidence threshold for detections. |
|
|
iou_thres (float): The Intersection over Union threshold. |
|
|
""" |
|
|
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45, task="detect"): |
|
|
"""Initialize attributes for the YOLO model.""" |
|
|
self.task = task |
|
|
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == "detect" else np.zeros((nc, nc)) |
|
|
self.nc = nc # number of classes |
|
|
self.conf = 0.25 if conf in (None, 0.001) else conf # apply 0.25 if default val conf is passed |
|
|
self.iou_thres = iou_thres |
|
|
|
|
|
def process_cls_preds(self, preds, targets): |
|
|
""" |
|
|
Update confusion matrix for classification task. |
|
|
|
|
|
Args: |
|
|
preds (Array[N, min(nc,5)]): Predicted class labels. |
|
|
targets (Array[N, 1]): Ground truth class labels. |
|
|
""" |
|
|
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets) |
|
|
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()): |
|
|
self.matrix[p][t] += 1 |
|
|
|
|
|
def process_batch(self, detections, gt_bboxes, gt_cls): |
|
|
""" |
|
|
Update confusion matrix for object detection task. |
|
|
|
|
|
Args: |
|
|
detections (Array[N, 6]): Detected bounding boxes and their associated information. |
|
|
Each row should contain (x1, y1, x2, y2, conf, class). |
|
|
gt_bboxes (Array[M, 4]): Ground truth bounding boxes with xyxy format. |
|
|
gt_cls (Array[M]): The class labels. |
|
|
""" |
|
|
if gt_cls.shape[0] == 0: # Check if labels is empty |
|
|
if detections is not None: |
|
|
detections = detections[detections[:, 4] > self.conf] |
|
|
detection_classes = detections[:, 5].int() |
|
|
for dc in detection_classes: |
|
|
self.matrix[dc, self.nc] += 1 # false positives |
|
|
return |
|
|
if detections is None: |
|
|
gt_classes = gt_cls.int() |
|
|
for gc in gt_classes: |
|
|
self.matrix[self.nc, gc] += 1 # background FN |
|
|
return |
|
|
|
|
|
detections = detections[detections[:, 4] > self.conf] |
|
|
gt_classes = gt_cls.int() |
|
|
detection_classes = detections[:, 5].int() |
|
|
iou = box_iou(gt_bboxes, detections[:, :4]) |
|
|
|
|
|
x = torch.where(iou > self.iou_thres) |
|
|
if x[0].shape[0]: |
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() |
|
|
if x[0].shape[0] > 1: |
|
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
else: |
|
|
matches = np.zeros((0, 3)) |
|
|
|
|
|
n = matches.shape[0] > 0 |
|
|
m0, m1, _ = matches.transpose().astype(int) |
|
|
for i, gc in enumerate(gt_classes): |
|
|
j = m0 == i |
|
|
if n and sum(j) == 1: |
|
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct |
|
|
else: |
|
|
self.matrix[self.nc, gc] += 1 # true background |
|
|
|
|
|
if n: |
|
|
for i, dc in enumerate(detection_classes): |
|
|
if not any(m1 == i): |
|
|
self.matrix[dc, self.nc] += 1 # predicted background |
|
|
|
|
|
def matrix(self): |
|
|
"""Returns the confusion matrix.""" |
|
|
return self.matrix |
|
|
|
|
|
def tp_fp(self): |
|
|
"""Returns true positives and false positives.""" |
|
|
tp = self.matrix.diagonal() # true positives |
|
|
fp = self.matrix.sum(1) - tp # false positives |
|
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections) |
|
|
return (tp[:-1], fp[:-1]) if self.task == "detect" else (tp, fp) # remove background class if task=detect |
|
|
|
|
|
@TryExcept("WARNING ⚠️ ConfusionMatrix plot failure") |
|
|
@plt_settings() |
|
|
def plot(self, normalize=True, save_dir="", names=(), on_plot=None): |
|
|
""" |
|
|
Plot the confusion matrix using seaborn and save it to a file. |
|
|
|
|
|
Args: |
|
|
normalize (bool): Whether to normalize the confusion matrix. |
|
|
save_dir (str): Directory where the plot will be saved. |
|
|
names (tuple): Names of classes, used as labels on the plot. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. |
|
|
""" |
|
|
import seaborn as sn |
|
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1) # normalize columns |
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) |
|
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) |
|
|
nc, nn = self.nc, len(names) # number of classes, names |
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size |
|
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels |
|
|
ticklabels = (list(names) + ["background"]) if labels else "auto" |
|
|
with warnings.catch_warnings(): |
|
|
warnings.simplefilter("ignore") # suppress empty matrix RuntimeWarning: All-NaN slice encountered |
|
|
sn.heatmap( |
|
|
array, |
|
|
ax=ax, |
|
|
annot=nc < 30, |
|
|
annot_kws={"size": 8}, |
|
|
cmap="Blues", |
|
|
fmt=".2f" if normalize else ".0f", |
|
|
square=True, |
|
|
vmin=0.0, |
|
|
xticklabels=ticklabels, |
|
|
yticklabels=ticklabels, |
|
|
).set_facecolor((1, 1, 1)) |
|
|
title = "Confusion Matrix" + " Normalized" * normalize |
|
|
ax.set_xlabel("True") |
|
|
ax.set_ylabel("Predicted") |
|
|
ax.set_title(title) |
|
|
plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png' |
|
|
fig.savefig(plot_fname, dpi=250) |
|
|
plt.close(fig) |
|
|
if on_plot: |
|
|
on_plot(plot_fname) |
|
|
|
|
|
def print(self): |
|
|
"""Print the confusion matrix to the console.""" |
|
|
for i in range(self.nc + 1): |
|
|
LOGGER.info(" ".join(map(str, self.matrix[i]))) |
|
|
|
|
|
|
|
|
def smooth(y, f=0.05): |
|
|
"""Box filter of fraction f.""" |
|
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) |
|
|
p = np.ones(nf // 2) # ones padding |
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded |
|
|
return np.convolve(yp, np.ones(nf) / nf, mode="valid") # y-smoothed |
|
|
|
|
|
|
|
|
@plt_settings() |
|
|
def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=(), on_plot=None): |
|
|
"""Plots a precision-recall curve.""" |
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
py = np.stack(py, axis=1) |
|
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes |
|
|
for i, y in enumerate(py.T): |
|
|
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}") # plot(recall, precision) |
|
|
else: |
|
|
ax.plot(px, py, linewidth=1, color="grey") # plot(recall, precision) |
|
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color="blue", label="all classes %.3f mAP@0.5" % ap[:, 0].mean()) |
|
|
ax.set_xlabel("Recall") |
|
|
ax.set_ylabel("Precision") |
|
|
ax.set_xlim(0, 1) |
|
|
ax.set_ylim(0, 1) |
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
|
ax.set_title("Precision-Recall Curve") |
|
|
fig.savefig(save_dir, dpi=250) |
|
|
plt.close(fig) |
|
|
if on_plot: |
|
|
on_plot(save_dir) |
|
|
|
|
|
|
|
|
@plt_settings() |
|
|
def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric", on_plot=None): |
|
|
"""Plots a metric-confidence curve.""" |
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) |
|
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes |
|
|
for i, y in enumerate(py): |
|
|
ax.plot(px, y, linewidth=1, label=f"{names[i]}") # plot(confidence, metric) |
|
|
else: |
|
|
ax.plot(px, py.T, linewidth=1, color="grey") # plot(confidence, metric) |
|
|
|
|
|
y = smooth(py.mean(0), 0.05) |
|
|
ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}") |
|
|
ax.set_xlabel(xlabel) |
|
|
ax.set_ylabel(ylabel) |
|
|
ax.set_xlim(0, 1) |
|
|
ax.set_ylim(0, 1) |
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") |
|
|
ax.set_title(f"{ylabel}-Confidence Curve") |
|
|
fig.savefig(save_dir, dpi=250) |
|
|
plt.close(fig) |
|
|
if on_plot: |
|
|
on_plot(save_dir) |
|
|
|
|
|
|
|
|
def compute_ap(recall, precision): |
|
|
""" |
|
|
Compute the average precision (AP) given the recall and precision curves. |
|
|
|
|
|
Args: |
|
|
recall (list): The recall curve. |
|
|
precision (list): The precision curve. |
|
|
|
|
|
Returns: |
|
|
(float): Average precision. |
|
|
(np.ndarray): Precision envelope curve. |
|
|
(np.ndarray): Modified recall curve with sentinel values added at the beginning and end. |
|
|
""" |
|
|
|
|
|
# Append sentinel values to beginning and end |
|
|
mrec = np.concatenate(([0.0], recall, [1.0])) |
|
|
mpre = np.concatenate(([1.0], precision, [0.0])) |
|
|
|
|
|
# Compute the precision envelope |
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) |
|
|
|
|
|
# Integrate area under curve |
|
|
method = "interp" # methods: 'continuous', 'interp' |
|
|
if method == "interp": |
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO) |
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate |
|
|
else: # 'continuous' |
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes |
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve |
|
|
|
|
|
return ap, mpre, mrec |
|
|
|
|
|
|
|
|
def ap_per_class( |
|
|
tp, conf, pred_cls, target_cls, plot=False, on_plot=None, save_dir=Path(), names=(), eps=1e-16, prefix="" |
|
|
): |
|
|
""" |
|
|
Computes the average precision per class for object detection evaluation. |
|
|
|
|
|
Args: |
|
|
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False). |
|
|
conf (np.ndarray): Array of confidence scores of the detections. |
|
|
pred_cls (np.ndarray): Array of predicted classes of the detections. |
|
|
target_cls (np.ndarray): Array of true classes of the detections. |
|
|
plot (bool, optional): Whether to plot PR curves or not. Defaults to False. |
|
|
on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None. |
|
|
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path. |
|
|
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple. |
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16. |
|
|
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string. |
|
|
|
|
|
Returns: |
|
|
(tuple): A tuple of six arrays and one array of unique classes, where: |
|
|
tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.Shape: (nc,). |
|
|
fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class. Shape: (nc,). |
|
|
p (np.ndarray): Precision values at threshold given by max F1 metric for each class. Shape: (nc,). |
|
|
r (np.ndarray): Recall values at threshold given by max F1 metric for each class. Shape: (nc,). |
|
|
f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class. Shape: (nc,). |
|
|
ap (np.ndarray): Average precision for each class at different IoU thresholds. Shape: (nc, 10). |
|
|
unique_classes (np.ndarray): An array of unique classes that have data. Shape: (nc,). |
|
|
p_curve (np.ndarray): Precision curves for each class. Shape: (nc, 1000). |
|
|
r_curve (np.ndarray): Recall curves for each class. Shape: (nc, 1000). |
|
|
f1_curve (np.ndarray): F1-score curves for each class. Shape: (nc, 1000). |
|
|
x (np.ndarray): X-axis values for the curves. Shape: (1000,). |
|
|
prec_values: Precision values at mAP@0.5 for each class. Shape: (nc, 1000). |
|
|
""" |
|
|
|
|
|
# Sort by objectness |
|
|
i = np.argsort(-conf) |
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
|
|
# Find unique classes |
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True) |
|
|
nc = unique_classes.shape[0] # number of classes, number of detections |
|
|
|
|
|
# Create Precision-Recall curve and compute AP for each class |
|
|
x, prec_values = np.linspace(0, 1, 1000), [] |
|
|
|
|
|
# Average precision, precision and recall curves |
|
|
ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) |
|
|
for ci, c in enumerate(unique_classes): |
|
|
i = pred_cls == c |
|
|
n_l = nt[ci] # number of labels |
|
|
n_p = i.sum() # number of predictions |
|
|
if n_p == 0 or n_l == 0: |
|
|
continue |
|
|
|
|
|
# Accumulate FPs and TPs |
|
|
fpc = (1 - tp[i]).cumsum(0) |
|
|
tpc = tp[i].cumsum(0) |
|
|
|
|
|
# Recall |
|
|
recall = tpc / (n_l + eps) # recall curve |
|
|
r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases |
|
|
|
|
|
# Precision |
|
|
precision = tpc / (tpc + fpc) # precision curve |
|
|
p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1) # p at pr_score |
|
|
|
|
|
# AP from recall-precision curve |
|
|
for j in range(tp.shape[1]): |
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) |
|
|
if plot and j == 0: |
|
|
prec_values.append(np.interp(x, mrec, mpre)) # precision at mAP@0.5 |
|
|
|
|
|
prec_values = np.array(prec_values) # (nc, 1000) |
|
|
|
|
|
# Compute F1 (harmonic mean of precision and recall) |
|
|
f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps) |
|
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data |
|
|
names = dict(enumerate(names)) # to dict |
|
|
if plot: |
|
|
plot_pr_curve(x, prec_values, ap, save_dir / f"{prefix}PR_curve.png", names, on_plot=on_plot) |
|
|
plot_mc_curve(x, f1_curve, save_dir / f"{prefix}F1_curve.png", names, ylabel="F1", on_plot=on_plot) |
|
|
plot_mc_curve(x, p_curve, save_dir / f"{prefix}P_curve.png", names, ylabel="Precision", on_plot=on_plot) |
|
|
plot_mc_curve(x, r_curve, save_dir / f"{prefix}R_curve.png", names, ylabel="Recall", on_plot=on_plot) |
|
|
|
|
|
i = smooth(f1_curve.mean(0), 0.1).argmax() # max F1 index |
|
|
p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i] # max-F1 precision, recall, F1 values |
|
|
tp = (r * nt).round() # true positives |
|
|
fp = (tp / (p + eps) - tp).round() # false positives |
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values |
|
|
|
|
|
|
|
|
class Metric(SimpleClass): |
|
|
""" |
|
|
Class for computing evaluation metrics for YOLOv8 model. |
|
|
|
|
|
Attributes: |
|
|
p (list): Precision for each class. Shape: (nc,). |
|
|
r (list): Recall for each class. Shape: (nc,). |
|
|
f1 (list): F1 score for each class. Shape: (nc,). |
|
|
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10). |
|
|
ap_class_index (list): Index of class for each AP score. Shape: (nc,). |
|
|
nc (int): Number of classes. |
|
|
|
|
|
Methods: |
|
|
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or []. |
|
|
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or []. |
|
|
mp(): Mean precision of all classes. Returns: Float. |
|
|
mr(): Mean recall of all classes. Returns: Float. |
|
|
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float. |
|
|
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float. |
|
|
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float. |
|
|
mean_results(): Mean of results, returns mp, mr, map50, map. |
|
|
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i]. |
|
|
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,). |
|
|
fitness(): Model fitness as a weighted combination of metrics. Returns: Float. |
|
|
update(results): Update metric attributes with new evaluation results. |
|
|
""" |
|
|
|
|
|
def __init__(self) -> None: |
|
|
"""Initializes a Metric instance for computing evaluation metrics for the YOLOv8 model.""" |
|
|
self.p = [] # (nc, ) |
|
|
self.r = [] # (nc, ) |
|
|
self.f1 = [] # (nc, ) |
|
|
self.all_ap = [] # (nc, 10) |
|
|
self.ap_class_index = [] # (nc, ) |
|
|
self.nc = 0 |
|
|
|
|
|
@property |
|
|
def ap50(self): |
|
|
""" |
|
|
Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes. |
|
|
|
|
|
Returns: |
|
|
(np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available. |
|
|
""" |
|
|
return self.all_ap[:, 0] if len(self.all_ap) else [] |
|
|
|
|
|
@property |
|
|
def ap(self): |
|
|
""" |
|
|
Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes. |
|
|
|
|
|
Returns: |
|
|
(np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. |
|
|
""" |
|
|
return self.all_ap.mean(1) if len(self.all_ap) else [] |
|
|
|
|
|
@property |
|
|
def mp(self): |
|
|
""" |
|
|
Returns the Mean Precision of all classes. |
|
|
|
|
|
Returns: |
|
|
(float): The mean precision of all classes. |
|
|
""" |
|
|
return self.p.mean() if len(self.p) else 0.0 |
|
|
|
|
|
@property |
|
|
def mr(self): |
|
|
""" |
|
|
Returns the Mean Recall of all classes. |
|
|
|
|
|
Returns: |
|
|
(float): The mean recall of all classes. |
|
|
""" |
|
|
return self.r.mean() if len(self.r) else 0.0 |
|
|
|
|
|
@property |
|
|
def map50(self): |
|
|
""" |
|
|
Returns the mean Average Precision (mAP) at an IoU threshold of 0.5. |
|
|
|
|
|
Returns: |
|
|
(float): The mAP at an IoU threshold of 0.5. |
|
|
""" |
|
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 |
|
|
|
|
|
@property |
|
|
def map75(self): |
|
|
""" |
|
|
Returns the mean Average Precision (mAP) at an IoU threshold of 0.75. |
|
|
|
|
|
Returns: |
|
|
(float): The mAP at an IoU threshold of 0.75. |
|
|
""" |
|
|
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0 |
|
|
|
|
|
@property |
|
|
def map(self): |
|
|
""" |
|
|
Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
|
|
|
|
|
Returns: |
|
|
(float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
|
|
""" |
|
|
return self.all_ap.mean() if len(self.all_ap) else 0.0 |
|
|
|
|
|
def mean_results(self): |
|
|
"""Mean of results, return mp, mr, map50, map.""" |
|
|
return [self.mp, self.mr, self.map50, self.map] |
|
|
|
|
|
def class_result(self, i): |
|
|
"""Class-aware result, return p[i], r[i], ap50[i], ap[i].""" |
|
|
return self.p[i], self.r[i], self.ap50[i], self.ap[i] |
|
|
|
|
|
@property |
|
|
def maps(self): |
|
|
"""MAP of each class.""" |
|
|
maps = np.zeros(self.nc) + self.map |
|
|
for i, c in enumerate(self.ap_class_index): |
|
|
maps[c] = self.ap[i] |
|
|
return maps |
|
|
|
|
|
def fitness(self): |
|
|
"""Model fitness as a weighted combination of metrics.""" |
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] |
|
|
return (np.array(self.mean_results()) * w).sum() |
|
|
|
|
|
def update(self, results): |
|
|
""" |
|
|
Updates the evaluation metrics of the model with a new set of results. |
|
|
|
|
|
Args: |
|
|
results (tuple): A tuple containing the following evaluation metrics: |
|
|
- p (list): Precision for each class. Shape: (nc,). |
|
|
- r (list): Recall for each class. Shape: (nc,). |
|
|
- f1 (list): F1 score for each class. Shape: (nc,). |
|
|
- all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10). |
|
|
- ap_class_index (list): Index of class for each AP score. Shape: (nc,). |
|
|
|
|
|
Side Effects: |
|
|
Updates the class attributes `self.p`, `self.r`, `self.f1`, `self.all_ap`, and `self.ap_class_index` based |
|
|
on the values provided in the `results` tuple. |
|
|
""" |
|
|
( |
|
|
self.p, |
|
|
self.r, |
|
|
self.f1, |
|
|
self.all_ap, |
|
|
self.ap_class_index, |
|
|
self.p_curve, |
|
|
self.r_curve, |
|
|
self.f1_curve, |
|
|
self.px, |
|
|
self.prec_values, |
|
|
) = results |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [ |
|
|
[self.px, self.prec_values, "Recall", "Precision"], |
|
|
[self.px, self.f1_curve, "Confidence", "F1"], |
|
|
[self.px, self.p_curve, "Confidence", "Precision"], |
|
|
[self.px, self.r_curve, "Confidence", "Recall"], |
|
|
] |
|
|
|
|
|
|
|
|
class DetMetrics(SimpleClass): |
|
|
""" |
|
|
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision |
|
|
(mAP) of an object detection model. |
|
|
|
|
|
Args: |
|
|
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory. |
|
|
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. |
|
|
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple. |
|
|
|
|
|
Attributes: |
|
|
save_dir (Path): A path to the directory where the output plots will be saved. |
|
|
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. |
|
|
names (tuple of str): A tuple of strings that represents the names of the classes. |
|
|
box (Metric): An instance of the Metric class for storing the results of the detection metrics. |
|
|
speed (dict): A dictionary for storing the execution time of different parts of the detection process. |
|
|
|
|
|
Methods: |
|
|
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions. |
|
|
keys: Returns a list of keys for accessing the computed detection metrics. |
|
|
mean_results: Returns a list of mean values for the computed detection metrics. |
|
|
class_result(i): Returns a list of values for the computed detection metrics for a specific class. |
|
|
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds. |
|
|
fitness: Computes the fitness score based on the computed detection metrics. |
|
|
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values. |
|
|
results_dict: Returns a dictionary that maps detection metric keys to their computed values. |
|
|
curves: TODO |
|
|
curves_results: TODO |
|
|
""" |
|
|
|
|
|
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None: |
|
|
"""Initialize a DetMetrics instance with a save directory, plot flag, callback function, and class names.""" |
|
|
self.save_dir = save_dir |
|
|
self.plot = plot |
|
|
self.on_plot = on_plot |
|
|
self.names = names |
|
|
self.box = Metric() |
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
self.task = "detect" |
|
|
|
|
|
def process(self, tp, conf, pred_cls, target_cls): |
|
|
"""Process predicted results for object detection and update metrics.""" |
|
|
results = ap_per_class( |
|
|
tp, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
on_plot=self.on_plot, |
|
|
)[2:] |
|
|
self.box.nc = len(self.names) |
|
|
self.box.update(results) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Returns a list of keys for accessing specific metrics.""" |
|
|
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"] |
|
|
|
|
|
def mean_results(self): |
|
|
"""Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.""" |
|
|
return self.box.mean_results() |
|
|
|
|
|
def class_result(self, i): |
|
|
"""Return the result of evaluating the performance of an object detection model on a specific class.""" |
|
|
return self.box.class_result(i) |
|
|
|
|
|
@property |
|
|
def maps(self): |
|
|
"""Returns mean Average Precision (mAP) scores per class.""" |
|
|
return self.box.maps |
|
|
|
|
|
@property |
|
|
def fitness(self): |
|
|
"""Returns the fitness of box object.""" |
|
|
return self.box.fitness() |
|
|
|
|
|
@property |
|
|
def ap_class_index(self): |
|
|
"""Returns the average precision index per class.""" |
|
|
return self.box.ap_class_index |
|
|
|
|
|
@property |
|
|
def results_dict(self): |
|
|
"""Returns dictionary of computed performance metrics and statistics.""" |
|
|
return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness])) |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return ["Precision-Recall(B)", "F1-Confidence(B)", "Precision-Confidence(B)", "Recall-Confidence(B)"] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns dictionary of computed performance metrics and statistics.""" |
|
|
return self.box.curves_results |
|
|
|
|
|
|
|
|
class SegmentMetrics(SimpleClass): |
|
|
""" |
|
|
Calculates and aggregates detection and segmentation metrics over a given set of classes. |
|
|
|
|
|
Args: |
|
|
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. |
|
|
plot (bool): Whether to save the detection and segmentation plots. Default is False. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. |
|
|
names (list): List of class names. Default is an empty list. |
|
|
|
|
|
Attributes: |
|
|
save_dir (Path): Path to the directory where the output plots should be saved. |
|
|
plot (bool): Whether to save the detection and segmentation plots. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. |
|
|
names (list): List of class names. |
|
|
box (Metric): An instance of the Metric class to calculate box detection metrics. |
|
|
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics. |
|
|
speed (dict): Dictionary to store the time taken in different phases of inference. |
|
|
|
|
|
Methods: |
|
|
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. |
|
|
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. |
|
|
class_result(i): Returns the detection and segmentation metrics of class `i`. |
|
|
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. |
|
|
fitness: Returns the fitness scores, which are a single weighted combination of metrics. |
|
|
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). |
|
|
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. |
|
|
""" |
|
|
|
|
|
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None: |
|
|
"""Initialize a SegmentMetrics instance with a save directory, plot flag, callback function, and class names.""" |
|
|
self.save_dir = save_dir |
|
|
self.plot = plot |
|
|
self.on_plot = on_plot |
|
|
self.names = names |
|
|
self.box = Metric() |
|
|
self.seg = Metric() |
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
self.task = "segment" |
|
|
|
|
|
def process(self, tp, tp_m, conf, pred_cls, target_cls): |
|
|
""" |
|
|
Processes the detection and segmentation metrics over the given set of predictions. |
|
|
|
|
|
Args: |
|
|
tp (list): List of True Positive boxes. |
|
|
tp_m (list): List of True Positive masks. |
|
|
conf (list): List of confidence scores. |
|
|
pred_cls (list): List of predicted classes. |
|
|
target_cls (list): List of target classes. |
|
|
""" |
|
|
|
|
|
results_mask = ap_per_class( |
|
|
tp_m, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
on_plot=self.on_plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
prefix="Mask", |
|
|
)[2:] |
|
|
self.seg.nc = len(self.names) |
|
|
self.seg.update(results_mask) |
|
|
results_box = ap_per_class( |
|
|
tp, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
on_plot=self.on_plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
prefix="Box", |
|
|
)[2:] |
|
|
self.box.nc = len(self.names) |
|
|
self.box.update(results_box) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Returns a list of keys for accessing metrics.""" |
|
|
return [ |
|
|
"metrics/precision(B)", |
|
|
"metrics/recall(B)", |
|
|
"metrics/mAP50(B)", |
|
|
"metrics/mAP50-95(B)", |
|
|
"metrics/precision(M)", |
|
|
"metrics/recall(M)", |
|
|
"metrics/mAP50(M)", |
|
|
"metrics/mAP50-95(M)", |
|
|
] |
|
|
|
|
|
def mean_results(self): |
|
|
"""Return the mean metrics for bounding box and segmentation results.""" |
|
|
return self.box.mean_results() + self.seg.mean_results() |
|
|
|
|
|
def class_result(self, i): |
|
|
"""Returns classification results for a specified class index.""" |
|
|
return self.box.class_result(i) + self.seg.class_result(i) |
|
|
|
|
|
@property |
|
|
def maps(self): |
|
|
"""Returns mAP scores for object detection and semantic segmentation models.""" |
|
|
return self.box.maps + self.seg.maps |
|
|
|
|
|
@property |
|
|
def fitness(self): |
|
|
"""Get the fitness score for both segmentation and bounding box models.""" |
|
|
return self.seg.fitness() + self.box.fitness() |
|
|
|
|
|
@property |
|
|
def ap_class_index(self): |
|
|
"""Boxes and masks have the same ap_class_index.""" |
|
|
return self.box.ap_class_index |
|
|
|
|
|
@property |
|
|
def results_dict(self): |
|
|
"""Returns results of object detection model for evaluation.""" |
|
|
return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness])) |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [ |
|
|
"Precision-Recall(B)", |
|
|
"F1-Confidence(B)", |
|
|
"Precision-Confidence(B)", |
|
|
"Recall-Confidence(B)", |
|
|
"Precision-Recall(M)", |
|
|
"F1-Confidence(M)", |
|
|
"Precision-Confidence(M)", |
|
|
"Recall-Confidence(M)", |
|
|
] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns dictionary of computed performance metrics and statistics.""" |
|
|
return self.box.curves_results + self.seg.curves_results |
|
|
|
|
|
|
|
|
class PoseMetrics(SegmentMetrics): |
|
|
""" |
|
|
Calculates and aggregates detection and pose metrics over a given set of classes. |
|
|
|
|
|
Args: |
|
|
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. |
|
|
plot (bool): Whether to save the detection and segmentation plots. Default is False. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None. |
|
|
names (list): List of class names. Default is an empty list. |
|
|
|
|
|
Attributes: |
|
|
save_dir (Path): Path to the directory where the output plots should be saved. |
|
|
plot (bool): Whether to save the detection and segmentation plots. |
|
|
on_plot (func): An optional callback to pass plots path and data when they are rendered. |
|
|
names (list): List of class names. |
|
|
box (Metric): An instance of the Metric class to calculate box detection metrics. |
|
|
pose (Metric): An instance of the Metric class to calculate mask segmentation metrics. |
|
|
speed (dict): Dictionary to store the time taken in different phases of inference. |
|
|
|
|
|
Methods: |
|
|
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. |
|
|
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. |
|
|
class_result(i): Returns the detection and segmentation metrics of class `i`. |
|
|
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. |
|
|
fitness: Returns the fitness scores, which are a single weighted combination of metrics. |
|
|
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). |
|
|
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. |
|
|
""" |
|
|
|
|
|
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None: |
|
|
"""Initialize the PoseMetrics class with directory path, class names, and plotting options.""" |
|
|
super().__init__(save_dir, plot, names) |
|
|
self.save_dir = save_dir |
|
|
self.plot = plot |
|
|
self.on_plot = on_plot |
|
|
self.names = names |
|
|
self.box = Metric() |
|
|
self.pose = Metric() |
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
self.task = "pose" |
|
|
|
|
|
def process(self, tp, tp_p, conf, pred_cls, target_cls): |
|
|
""" |
|
|
Processes the detection and pose metrics over the given set of predictions. |
|
|
|
|
|
Args: |
|
|
tp (list): List of True Positive boxes. |
|
|
tp_p (list): List of True Positive keypoints. |
|
|
conf (list): List of confidence scores. |
|
|
pred_cls (list): List of predicted classes. |
|
|
target_cls (list): List of target classes. |
|
|
""" |
|
|
|
|
|
results_pose = ap_per_class( |
|
|
tp_p, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
on_plot=self.on_plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
prefix="Pose", |
|
|
)[2:] |
|
|
self.pose.nc = len(self.names) |
|
|
self.pose.update(results_pose) |
|
|
results_box = ap_per_class( |
|
|
tp, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
on_plot=self.on_plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
prefix="Box", |
|
|
)[2:] |
|
|
self.box.nc = len(self.names) |
|
|
self.box.update(results_box) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Returns list of evaluation metric keys.""" |
|
|
return [ |
|
|
"metrics/precision(B)", |
|
|
"metrics/recall(B)", |
|
|
"metrics/mAP50(B)", |
|
|
"metrics/mAP50-95(B)", |
|
|
"metrics/precision(P)", |
|
|
"metrics/recall(P)", |
|
|
"metrics/mAP50(P)", |
|
|
"metrics/mAP50-95(P)", |
|
|
] |
|
|
|
|
|
def mean_results(self): |
|
|
"""Return the mean results of box and pose.""" |
|
|
return self.box.mean_results() + self.pose.mean_results() |
|
|
|
|
|
def class_result(self, i): |
|
|
"""Return the class-wise detection results for a specific class i.""" |
|
|
return self.box.class_result(i) + self.pose.class_result(i) |
|
|
|
|
|
@property |
|
|
def maps(self): |
|
|
"""Returns the mean average precision (mAP) per class for both box and pose detections.""" |
|
|
return self.box.maps + self.pose.maps |
|
|
|
|
|
@property |
|
|
def fitness(self): |
|
|
"""Computes classification metrics and speed using the `targets` and `pred` inputs.""" |
|
|
return self.pose.fitness() + self.box.fitness() |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [ |
|
|
"Precision-Recall(B)", |
|
|
"F1-Confidence(B)", |
|
|
"Precision-Confidence(B)", |
|
|
"Recall-Confidence(B)", |
|
|
"Precision-Recall(P)", |
|
|
"F1-Confidence(P)", |
|
|
"Precision-Confidence(P)", |
|
|
"Recall-Confidence(P)", |
|
|
] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns dictionary of computed performance metrics and statistics.""" |
|
|
return self.box.curves_results + self.pose.curves_results |
|
|
|
|
|
|
|
|
class ClassifyMetrics(SimpleClass): |
|
|
""" |
|
|
Class for computing classification metrics including top-1 and top-5 accuracy. |
|
|
|
|
|
Attributes: |
|
|
top1 (float): The top-1 accuracy. |
|
|
top5 (float): The top-5 accuracy. |
|
|
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline. |
|
|
|
|
|
Properties: |
|
|
fitness (float): The fitness of the model, which is equal to top-5 accuracy. |
|
|
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness. |
|
|
keys (List[str]): A list of keys for the results_dict. |
|
|
|
|
|
Methods: |
|
|
process(targets, pred): Processes the targets and predictions to compute classification metrics. |
|
|
""" |
|
|
|
|
|
def __init__(self) -> None: |
|
|
"""Initialize a ClassifyMetrics instance.""" |
|
|
self.top1 = 0 |
|
|
self.top5 = 0 |
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
self.task = "classify" |
|
|
|
|
|
def process(self, targets, pred): |
|
|
"""Target classes and predicted classes.""" |
|
|
pred, targets = torch.cat(pred), torch.cat(targets) |
|
|
correct = (targets[:, None] == pred).float() |
|
|
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy |
|
|
self.top1, self.top5 = acc.mean(0).tolist() |
|
|
|
|
|
@property |
|
|
def fitness(self): |
|
|
"""Returns mean of top-1 and top-5 accuracies as fitness score.""" |
|
|
return (self.top1 + self.top5) / 2 |
|
|
|
|
|
@property |
|
|
def results_dict(self): |
|
|
"""Returns a dictionary with model's performance metrics and fitness score.""" |
|
|
return dict(zip(self.keys + ["fitness"], [self.top1, self.top5, self.fitness])) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Returns a list of keys for the results_dict property.""" |
|
|
return ["metrics/accuracy_top1", "metrics/accuracy_top5"] |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [] |
|
|
|
|
|
|
|
|
class OBBMetrics(SimpleClass): |
|
|
def __init__(self, save_dir=Path("."), plot=False, on_plot=None, names=()) -> None: |
|
|
self.save_dir = save_dir |
|
|
self.plot = plot |
|
|
self.on_plot = on_plot |
|
|
self.names = names |
|
|
self.box = Metric() |
|
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
|
|
|
def process(self, tp, conf, pred_cls, target_cls): |
|
|
"""Process predicted results for object detection and update metrics.""" |
|
|
results = ap_per_class( |
|
|
tp, |
|
|
conf, |
|
|
pred_cls, |
|
|
target_cls, |
|
|
plot=self.plot, |
|
|
save_dir=self.save_dir, |
|
|
names=self.names, |
|
|
on_plot=self.on_plot, |
|
|
)[2:] |
|
|
self.box.nc = len(self.names) |
|
|
self.box.update(results) |
|
|
|
|
|
@property |
|
|
def keys(self): |
|
|
"""Returns a list of keys for accessing specific metrics.""" |
|
|
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"] |
|
|
|
|
|
def mean_results(self): |
|
|
"""Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.""" |
|
|
return self.box.mean_results() |
|
|
|
|
|
def class_result(self, i): |
|
|
"""Return the result of evaluating the performance of an object detection model on a specific class.""" |
|
|
return self.box.class_result(i) |
|
|
|
|
|
@property |
|
|
def maps(self): |
|
|
"""Returns mean Average Precision (mAP) scores per class.""" |
|
|
return self.box.maps |
|
|
|
|
|
@property |
|
|
def fitness(self): |
|
|
"""Returns the fitness of box object.""" |
|
|
return self.box.fitness() |
|
|
|
|
|
@property |
|
|
def ap_class_index(self): |
|
|
"""Returns the average precision index per class.""" |
|
|
return self.box.ap_class_index |
|
|
|
|
|
@property |
|
|
def results_dict(self): |
|
|
"""Returns dictionary of computed performance metrics and statistics.""" |
|
|
return dict(zip(self.keys + ["fitness"], self.mean_results() + [self.fitness])) |
|
|
|
|
|
@property |
|
|
def curves(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return [] |
|
|
|
|
|
@property |
|
|
def curves_results(self): |
|
|
"""Returns a list of curves for accessing specific metrics curves.""" |
|
|
return []
|
|
|
|