You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

11 KiB

comments description keywords
true Optimize your fitness routine with real-time workouts monitoring using Ultralytics YOLO11. Track and improve your exercise form and performance. workouts monitoring, Ultralytics YOLO11, pose estimation, fitness tracking, exercise assessment, real-time feedback, exercise form, performance metrics

Workouts Monitoring using Ultralytics YOLO11

Monitoring workouts through pose estimation with Ultralytics YOLO11 enhances exercise assessment by accurately tracking key body landmarks and joints in real-time. This technology provides instant feedback on exercise form, tracks workout routines, and measures performance metrics, optimizing training sessions for users and trainers alike.



Watch: Workouts Monitoring using Ultralytics YOLO11 | Pushups, Pullups, Ab Workouts

Advantages of Workouts Monitoring?

  • Optimized Performance: Tailoring workouts based on monitoring data for better results.
  • Goal Achievement: Track and adjust fitness goals for measurable progress.
  • Personalization: Customized workout plans based on individual data for effectiveness.
  • Health Awareness: Early detection of patterns indicating health issues or over-training.
  • Informed Decisions: Data-driven decisions for adjusting routines and setting realistic goals.

Real World Applications

Workouts Monitoring Workouts Monitoring
PushUps Counting PullUps Counting
PushUps Counting PullUps Counting

!!! example "Workouts Monitoring Example"

=== "Workouts Monitoring"

    ```python
    import cv2

    from ultralytics import YOLO, solutions

    model = YOLO("yolo11n-pose.pt")
    cap = cv2.VideoCapture("path/to/video/file.mp4")
    assert cap.isOpened(), "Error reading video file"
    w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

    gym_object = solutions.AIGym(
        line_thickness=2,
        view_img=True,
        pose_type="pushup",
        kpts_to_check=[6, 8, 10],
    )

    while cap.isOpened():
        success, im0 = cap.read()
        if not success:
            print("Video frame is empty or video processing has been successfully completed.")
            break
        results = model.track(im0, verbose=False)  # Tracking recommended
        # results = model.predict(im0)  # Prediction also supported
        im0 = gym_object.start_counting(im0, results)

    cv2.destroyAllWindows()
    ```

=== "Workouts Monitoring with Save Output"

    ```python
    import cv2

    from ultralytics import YOLO, solutions

    model = YOLO("yolo11n-pose.pt")
    cap = cv2.VideoCapture("path/to/video/file.mp4")
    assert cap.isOpened(), "Error reading video file"
    w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

    video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

    gym_object = solutions.AIGym(
        line_thickness=2,
        view_img=True,
        pose_type="pushup",
        kpts_to_check=[6, 8, 10],
    )

    while cap.isOpened():
        success, im0 = cap.read()
        if not success:
            print("Video frame is empty or video processing has been successfully completed.")
            break
        results = model.track(im0, verbose=False)  # Tracking recommended
        # results = model.predict(im0)  # Prediction also supported
        im0 = gym_object.start_counting(im0, results)
        video_writer.write(im0)

    cv2.destroyAllWindows()
    video_writer.release()
    ```

???+ tip "Support"

"pushup", "pullup" and "abworkout" supported

KeyPoints Map

keyPoints Order Ultralytics YOLO11 Pose

Arguments AIGym

Name Type Default Description
kpts_to_check list None List of three keypoints index, for counting specific workout, followed by keypoint Map
line_thickness int 2 Thickness of the lines drawn.
view_img bool False Flag to display the image.
pose_up_angle float 145.0 Angle threshold for the 'up' pose.
pose_down_angle float 90.0 Angle threshold for the 'down' pose.
pose_type str pullup Type of pose to detect ('pullup', pushup, abworkout, squat).

Arguments model.predict

{% include "macros/predict-args.md" %}

Arguments model.track

{% include "macros/track-args.md" %}

FAQ

How do I monitor my workouts using Ultralytics YOLO11?

To monitor your workouts using Ultralytics YOLO11, you can utilize the pose estimation capabilities to track and analyze key body landmarks and joints in real-time. This allows you to receive instant feedback on your exercise form, count repetitions, and measure performance metrics. You can start by using the provided example code for pushups, pullups, or ab workouts as shown:

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

gym_object = solutions.AIGym(
    line_thickness=2,
    view_img=True,
    pose_type="pushup",
    kpts_to_check=[6, 8, 10],
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    results = model.track(im0, verbose=False)
    im0 = gym_object.start_counting(im0, results)

cv2.destroyAllWindows()

For further customization and settings, you can refer to the AIGym section in the documentation.

What are the benefits of using Ultralytics YOLO11 for workout monitoring?

Using Ultralytics YOLO11 for workout monitoring provides several key benefits:

  • Optimized Performance: By tailoring workouts based on monitoring data, you can achieve better results.
  • Goal Achievement: Easily track and adjust fitness goals for measurable progress.
  • Personalization: Get customized workout plans based on your individual data for optimal effectiveness.
  • Health Awareness: Early detection of patterns that indicate potential health issues or over-training.
  • Informed Decisions: Make data-driven decisions to adjust routines and set realistic goals.

You can watch a YouTube video demonstration to see these benefits in action.

How accurate is Ultralytics YOLO11 in detecting and tracking exercises?

Ultralytics YOLO11 is highly accurate in detecting and tracking exercises due to its state-of-the-art pose estimation capabilities. It can accurately track key body landmarks and joints, providing real-time feedback on exercise form and performance metrics. The model's pretrained weights and robust architecture ensure high precision and reliability. For real-world examples, check out the real-world applications section in the documentation, which showcases pushups and pullups counting.

Can I use Ultralytics YOLO11 for custom workout routines?

Yes, Ultralytics YOLO11 can be adapted for custom workout routines. The AIGym class supports different pose types such as "pushup", "pullup", and "abworkout." You can specify keypoints and angles to detect specific exercises. Here is an example setup:

from ultralytics import solutions

gym_object = solutions.AIGym(
    line_thickness=2,
    view_img=True,
    pose_type="squat",
    kpts_to_check=[6, 8, 10],
)

For more details on setting arguments, refer to the Arguments AIGym section. This flexibility allows you to monitor various exercises and customize routines based on your needs.

How can I save the workout monitoring output using Ultralytics YOLO11?

To save the workout monitoring output, you can modify the code to include a video writer that saves the processed frames. Here's an example:

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolo11n-pose.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

video_writer = cv2.VideoWriter("workouts.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

gym_object = solutions.AIGym(
    line_thickness=2,
    view_img=True,
    pose_type="pushup",
    kpts_to_check=[6, 8, 10],
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    results = model.track(im0, verbose=False)
    im0 = gym_object.start_counting(im0, results)
    video_writer.write(im0)

cv2.destroyAllWindows()
video_writer.release()

This setup writes the monitored video to an output file. For more details, refer to the Workouts Monitoring with Save Output section.