You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.4 KiB
150 lines
5.4 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
import contextlib |
|
|
|
import pytest |
|
import torch |
|
|
|
from ultralytics import YOLO, download |
|
from ultralytics.utils import ASSETS, DATASETS_DIR, WEIGHTS_DIR |
|
from ultralytics.utils.checks import cuda_device_count, cuda_is_available |
|
|
|
CUDA_IS_AVAILABLE = cuda_is_available() |
|
CUDA_DEVICE_COUNT = cuda_device_count() |
|
|
|
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path |
|
DATA = 'coco8.yaml' |
|
BUS = ASSETS / 'bus.jpg' |
|
|
|
|
|
def test_checks(): |
|
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE |
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_train(): |
|
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] |
|
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64 |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_predict_multiple_devices(): |
|
model = YOLO('yolov8n.pt') |
|
model = model.cpu() |
|
assert str(model.device) == 'cpu' |
|
_ = model(BUS) # CPU inference |
|
assert str(model.device) == 'cpu' |
|
|
|
model = model.to('cuda:0') |
|
assert str(model.device) == 'cuda:0' |
|
_ = model(BUS) # CUDA inference |
|
assert str(model.device) == 'cuda:0' |
|
|
|
model = model.cpu() |
|
assert str(model.device) == 'cpu' |
|
_ = model(BUS) # CPU inference |
|
assert str(model.device) == 'cpu' |
|
|
|
model = model.cuda() |
|
assert str(model.device) == 'cuda:0' |
|
_ = model(BUS) # CUDA inference |
|
assert str(model.device) == 'cuda:0' |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_autobatch(): |
|
from ultralytics.utils.autobatch import check_train_batch_size |
|
|
|
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_utils_benchmarks(): |
|
from ultralytics.utils.benchmarks import ProfileModels |
|
|
|
# Pre-export a dynamic engine model to use dynamic inference |
|
YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1) |
|
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_predict_sam(): |
|
from ultralytics import SAM |
|
from ultralytics.models.sam import Predictor as SAMPredictor |
|
|
|
# Load a model |
|
model = SAM(WEIGHTS_DIR / 'sam_b.pt') |
|
|
|
# Display model information (optional) |
|
model.info() |
|
|
|
# Run inference |
|
model(BUS, device=0) |
|
|
|
# Run inference with bboxes prompt |
|
model(BUS, bboxes=[439, 437, 524, 709], device=0) |
|
|
|
# Run inference with points prompt |
|
model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0) |
|
|
|
# Create SAMPredictor |
|
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model=WEIGHTS_DIR / 'mobile_sam.pt') |
|
predictor = SAMPredictor(overrides=overrides) |
|
|
|
# Set image |
|
predictor.set_image(ASSETS / 'zidane.jpg') # set with image file |
|
# predictor(bboxes=[439, 437, 524, 709]) |
|
# predictor(points=[900, 370], labels=[1]) |
|
|
|
# Reset image |
|
predictor.reset_image() |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_model_ray_tune(): |
|
with contextlib.suppress(RuntimeError): # RuntimeError may be caused by out-of-memory |
|
YOLO('yolov8n-cls.yaml').tune(use_ray=True, |
|
data='imagenet10', |
|
grace_period=1, |
|
iterations=1, |
|
imgsz=32, |
|
epochs=1, |
|
plots=False, |
|
device='cpu') |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_model_tune(): |
|
YOLO('yolov8n-pose.pt').tune(data='coco8-pose.yaml', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') |
|
YOLO('yolov8n-cls.pt').tune(data='imagenet10', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') |
|
|
|
|
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available') |
|
def test_pycocotools(): |
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.models.yolo.pose import PoseValidator |
|
from ultralytics.models.yolo.segment import SegmentationValidator |
|
|
|
# Download annotations after each dataset downloads first |
|
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/' |
|
|
|
args = {'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64} |
|
validator = DetectionValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations') |
|
_ = validator.eval_json(validator.stats) |
|
|
|
args = {'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64} |
|
validator = SegmentationValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations') |
|
_ = validator.eval_json(validator.stats) |
|
|
|
args = {'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64} |
|
validator = PoseValidator(args=args) |
|
validator() |
|
validator.is_coco = True |
|
download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations') |
|
_ = validator.eval_json(validator.stats)
|
|
|