You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
7.8 KiB
247 lines
7.8 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import shutil |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from torchvision.transforms import ToTensor |
|
|
|
from ultralytics import RTDETR, YOLO |
|
from ultralytics.data.build import load_inference_source |
|
from ultralytics.utils import LINUX, MACOS, ONLINE, ROOT, SETTINGS |
|
from ultralytics.utils.torch_utils import TORCH_1_9 |
|
|
|
WEIGHTS_DIR = Path(SETTINGS['weights_dir']) |
|
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path |
|
CFG = 'yolov8n.yaml' |
|
SOURCE = ROOT / 'assets/bus.jpg' |
|
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg') |
|
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png') |
|
|
|
# Convert SOURCE to greyscale and 4-ch |
|
im = Image.open(SOURCE) |
|
im.convert('L').save(SOURCE_GREYSCALE) # greyscale |
|
im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha |
|
|
|
|
|
def test_model_forward(): |
|
model = YOLO(CFG) |
|
model(SOURCE, imgsz=32) |
|
|
|
|
|
def test_model_info(): |
|
model = YOLO(MODEL) |
|
model.info(verbose=True) |
|
|
|
|
|
def test_model_fuse(): |
|
model = YOLO(MODEL) |
|
model.fuse() |
|
|
|
|
|
def test_predict_dir(): |
|
model = YOLO(MODEL) |
|
model(source=ROOT / 'assets', imgsz=32) |
|
|
|
|
|
def test_predict_img(): |
|
model = YOLO(MODEL) |
|
seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') |
|
cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') |
|
pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') |
|
im = cv2.imread(str(SOURCE)) |
|
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL |
|
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray |
|
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch |
|
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream |
|
assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy |
|
batch = [ |
|
str(SOURCE), # filename |
|
Path(SOURCE), # Path |
|
'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI |
|
cv2.imread(str(SOURCE)), # OpenCV |
|
Image.open(SOURCE), # PIL |
|
np.zeros((320, 640, 3))] # numpy |
|
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch |
|
|
|
# Test tensor inference |
|
im = cv2.imread(str(SOURCE)) # OpenCV |
|
t = cv2.resize(im, (32, 32)) |
|
t = ToTensor()(t) |
|
t = torch.stack([t, t, t, t]) |
|
results = model(t, imgsz=32) |
|
assert len(results) == t.shape[0] |
|
results = seg_model(t, imgsz=32) |
|
assert len(results) == t.shape[0] |
|
results = cls_model(t, imgsz=32) |
|
assert len(results) == t.shape[0] |
|
results = pose_model(t, imgsz=32) |
|
assert len(results) == t.shape[0] |
|
|
|
|
|
def test_predict_grey_and_4ch(): |
|
model = YOLO(MODEL) |
|
for f in SOURCE_RGBA, SOURCE_GREYSCALE: |
|
for source in Image.open(f), cv2.imread(str(f)), f: |
|
model(source, save=True, verbose=True, imgsz=32) |
|
|
|
|
|
def test_track_stream(): |
|
# Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker |
|
model = YOLO(MODEL) |
|
model.track('https://youtu.be/G17sBkb38XQ', imgsz=32, tracker='bytetrack.yaml') |
|
|
|
|
|
def test_val(): |
|
model = YOLO(MODEL) |
|
model.val(data='coco8.yaml', imgsz=32) |
|
|
|
|
|
def test_amp(): |
|
if torch.cuda.is_available(): |
|
from ultralytics.utils.checks import check_amp |
|
model = YOLO(MODEL).model.cuda() |
|
assert check_amp(model) |
|
|
|
|
|
def test_train_scratch(): |
|
model = YOLO(CFG) |
|
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk', batch=-1) # test disk caching with AutoBatch |
|
model(SOURCE) |
|
|
|
|
|
def test_train_pretrained(): |
|
model = YOLO(MODEL) |
|
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='ram') # test RAM caching |
|
model(SOURCE) |
|
|
|
|
|
def test_export_torchscript(): |
|
model = YOLO(MODEL) |
|
f = model.export(format='torchscript') |
|
YOLO(f)(SOURCE) # exported model inference |
|
|
|
|
|
def test_export_onnx(): |
|
model = YOLO(MODEL) |
|
f = model.export(format='onnx') |
|
YOLO(f)(SOURCE) # exported model inference |
|
|
|
|
|
def test_export_openvino(): |
|
if not MACOS: |
|
model = YOLO(MODEL) |
|
f = model.export(format='openvino') |
|
YOLO(f)(SOURCE) # exported model inference |
|
|
|
|
|
def test_export_coreml(): # sourcery skip: move-assign |
|
model = YOLO(MODEL) |
|
model.export(format='coreml', nms=True) |
|
# if MACOS: |
|
# YOLO(f)(SOURCE) # model prediction only supported on macOS |
|
|
|
|
|
def test_export_tflite(enabled=False): |
|
# TF suffers from install conflicts on Windows and macOS |
|
if enabled and LINUX: |
|
model = YOLO(MODEL) |
|
f = model.export(format='tflite') |
|
YOLO(f)(SOURCE) |
|
|
|
|
|
def test_export_pb(enabled=False): |
|
# TF suffers from install conflicts on Windows and macOS |
|
if enabled and LINUX: |
|
model = YOLO(MODEL) |
|
f = model.export(format='pb') |
|
YOLO(f)(SOURCE) |
|
|
|
|
|
def test_export_paddle(enabled=False): |
|
# Paddle protobuf requirements conflicting with onnx protobuf requirements |
|
if enabled: |
|
model = YOLO(MODEL) |
|
model.export(format='paddle') |
|
|
|
|
|
def test_all_model_yamls(): |
|
for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): |
|
if 'rtdetr' in m.name: |
|
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' |
|
RTDETR(m.name) |
|
else: |
|
YOLO(m.name) |
|
|
|
|
|
def test_workflow(): |
|
model = YOLO(MODEL) |
|
model.train(data='coco8.yaml', epochs=1, imgsz=32) |
|
model.val() |
|
model.predict(SOURCE) |
|
model.export(format='onnx') # export a model to ONNX format |
|
|
|
|
|
def test_predict_callback_and_setup(): |
|
# Test callback addition for prediction |
|
def on_predict_batch_end(predictor): # results -> List[batch_size] |
|
path, im0s, _, _ = predictor.batch |
|
im0s = im0s if isinstance(im0s, list) else [im0s] |
|
bs = [predictor.dataset.bs for _ in range(len(path))] |
|
predictor.results = zip(predictor.results, im0s, bs) |
|
|
|
model = YOLO(MODEL) |
|
model.add_callback('on_predict_batch_end', on_predict_batch_end) |
|
|
|
dataset = load_inference_source(source=SOURCE) |
|
bs = dataset.bs # noqa access predictor properties |
|
results = model.predict(dataset, stream=True) # source already setup |
|
for r, im0, bs in results: |
|
print('test_callback', im0.shape) |
|
print('test_callback', bs) |
|
boxes = r.boxes # Boxes object for bbox outputs |
|
print(boxes) |
|
|
|
|
|
def test_results(): |
|
for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': |
|
model = YOLO(m) |
|
results = model([SOURCE, SOURCE]) |
|
for r in results: |
|
r = r.cpu().numpy() |
|
r = r.to(device='cpu', dtype=torch.float32) |
|
r.save_txt(txt_file='runs/tests/label.txt', save_conf=True) |
|
r.save_crop(save_dir='runs/tests/crops/') |
|
r.tojson(normalize=True) |
|
r.plot(pil=True) |
|
r.plot(conf=True, boxes=True) |
|
print(r) |
|
print(r.path) |
|
for k in r.keys: |
|
print(getattr(r, k)) |
|
|
|
|
|
def test_data_utils(): |
|
# Test functions in ultralytics/data/utils.py |
|
from ultralytics.data.utils import HUBDatasetStats, autosplit, zip_directory |
|
from ultralytics.utils.downloads import download |
|
|
|
# from ultralytics.utils.files import WorkingDirectory |
|
# with WorkingDirectory(ROOT.parent / 'tests'): |
|
|
|
Path('tests/coco8.zip').unlink(missing_ok=True) |
|
Path('coco8.zip').unlink(missing_ok=True) |
|
download('https://github.com/ultralytics/hub/raw/master/example_datasets/coco8.zip', unzip=False) |
|
shutil.move('coco8.zip', 'tests') |
|
shutil.rmtree('tests/coco8', ignore_errors=True) |
|
stats = HUBDatasetStats('tests/coco8.zip', task='detect') |
|
stats.get_json(save=False) |
|
stats.process_images() |
|
|
|
autosplit('tests/coco8') |
|
zip_directory('tests/coco8/images/val') # zip |
|
shutil.rmtree('tests/coco8', ignore_errors=True) |
|
shutil.rmtree('tests/coco8-hub', ignore_errors=True)
|
|
|