You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

5.8 KiB

comments description keywords
true Instance Segmentation with Object Tracking using Ultralytics YOLOv8 Ultralytics, YOLOv8, Instance Segmentation, Object Detection, Object Tracking, Segbbox, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK

Instance Segmentation and Tracking using Ultralytics YOLOv8 🚀

What is Instance Segmentation?

Ultralytics YOLOv8 instance segmentation involves identifying and outlining individual objects in an image, providing a detailed understanding of spatial distribution. Unlike semantic segmentation, it uniquely labels and precisely delineates each object, crucial for tasks like object detection and medical imaging.

There are two types of instance segmentation tracking available in the Ultralytics package:

  • Instance Segmentation with Class Objects: Each class object is assigned a unique color for clear visual separation.

  • Instance Segmentation with Object Tracks: Every track is represented by a distinct color, facilitating easy identification and tracking.

Samples

Instance Segmentation Instance Segmentation + Object Tracking
Ultralytics Instance Segmentation Ultralytics Instance Segmentation with Object Tracking
Ultralytics Instance Segmentation 😍 Ultralytics Instance Segmentation with Object Tracking 🔥

!!! Example "Instance Segmentation and Tracking"

=== "Instance Segmentation"
    ```python
    import cv2
    from ultralytics import YOLO
    from ultralytics.utils.plotting import Annotator, colors

    model = YOLO("yolov8n-seg.pt")
    names = model.model.names
    cap = cv2.VideoCapture("path/to/video/file.mp4")

    out = cv2.VideoWriter('instance-segmentation.avi',
                          cv2.VideoWriter_fourcc(*'MJPG'),
                          30, (int(cap.get(3)), int(cap.get(4))))

    while True:
        ret, im0 = cap.read()
        if not ret:
            print("Video frame is empty or video processing has been successfully completed.")
            break

        results = model.predict(im0)
        clss = results[0].boxes.cls.cpu().tolist()
        masks = results[0].masks.xy

        annotator = Annotator(im0, line_width=2)

        for mask, cls in zip(masks, clss):
            annotator.seg_bbox(mask=mask,
                               mask_color=colors(int(cls), True),
                               det_label=names[int(cls)])

        out.write(im0)
        cv2.imshow("instance-segmentation", im0)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    out.release()
    cap.release()
    cv2.destroyAllWindows()

    ```

=== "Instance Segmentation with Object Tracking"
    ```python
    import cv2
    from ultralytics import YOLO
    from ultralytics.utils.plotting import Annotator, colors

    from collections import defaultdict

    track_history = defaultdict(lambda: [])

    model = YOLO("yolov8n-seg.pt")
    cap = cv2.VideoCapture("path/to/video/file.mp4")

    out = cv2.VideoWriter('instance-segmentation-object-tracking.avi',
                          cv2.VideoWriter_fourcc(*'MJPG'),
                          30, (int(cap.get(3)), int(cap.get(4))))

    while True:
        ret, im0 = cap.read()
        if not ret:
            print("Video frame is empty or video processing has been successfully completed.")
            break

        results = model.track(im0, persist=True)
        masks = results[0].masks.xy
        track_ids = results[0].boxes.id.int().cpu().tolist()

        annotator = Annotator(im0, line_width=2)

        for mask, track_id in zip(masks, track_ids):
            annotator.seg_bbox(mask=mask,
                               mask_color=colors(track_id, True),
                               track_label=str(track_id))

        out.write(im0)
        cv2.imshow("instance-segmentation-object-tracking", im0)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    out.release()
    cap.release()
    cv2.destroyAllWindows()
    ```

seg_bbox Arguments

Name Type Default Description
mask array None Segmentation mask coordinates
mask_color tuple (255, 0, 255) Mask color for every segmented box
det_label str None Label for segmented object
track_label str None Label for segmented and tracked object

Note

For any inquiries, feel free to post your questions in the Ultralytics Issue Section or the discussion section mentioned below.