You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.3 KiB
130 lines
4.3 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import argparse |
|
|
|
import cv2.dnn |
|
import numpy as np |
|
|
|
from ultralytics.utils import ASSETS, yaml_load |
|
from ultralytics.utils.checks import check_yaml |
|
|
|
CLASSES = yaml_load(check_yaml("coco128.yaml"))["names"] |
|
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3)) |
|
|
|
|
|
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h): |
|
""" |
|
Draws bounding boxes on the input image based on the provided arguments. |
|
|
|
Args: |
|
img (numpy.ndarray): The input image to draw the bounding box on. |
|
class_id (int): Class ID of the detected object. |
|
confidence (float): Confidence score of the detected object. |
|
x (int): X-coordinate of the top-left corner of the bounding box. |
|
y (int): Y-coordinate of the top-left corner of the bounding box. |
|
x_plus_w (int): X-coordinate of the bottom-right corner of the bounding box. |
|
y_plus_h (int): Y-coordinate of the bottom-right corner of the bounding box. |
|
""" |
|
label = f"{CLASSES[class_id]} ({confidence:.2f})" |
|
color = colors[class_id] |
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) |
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
|
|
|
|
|
def main(onnx_model, input_image): |
|
""" |
|
Main function to load ONNX model, perform inference, draw bounding boxes, and display the output image. |
|
|
|
Args: |
|
onnx_model (str): Path to the ONNX model. |
|
input_image (str): Path to the input image. |
|
|
|
Returns: |
|
list: List of dictionaries containing detection information such as class_id, class_name, confidence, etc. |
|
""" |
|
# Load the ONNX model |
|
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model) |
|
|
|
# Read the input image |
|
original_image: np.ndarray = cv2.imread(input_image) |
|
[height, width, _] = original_image.shape |
|
|
|
# Prepare a square image for inference |
|
length = max((height, width)) |
|
image = np.zeros((length, length, 3), np.uint8) |
|
image[0:height, 0:width] = original_image |
|
|
|
# Calculate scale factor |
|
scale = length / 640 |
|
|
|
# Preprocess the image and prepare blob for model |
|
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True) |
|
model.setInput(blob) |
|
|
|
# Perform inference |
|
outputs = model.forward() |
|
|
|
# Prepare output array |
|
outputs = np.array([cv2.transpose(outputs[0])]) |
|
rows = outputs.shape[1] |
|
|
|
boxes = [] |
|
scores = [] |
|
class_ids = [] |
|
|
|
# Iterate through output to collect bounding boxes, confidence scores, and class IDs |
|
for i in range(rows): |
|
classes_scores = outputs[0][i][4:] |
|
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores) |
|
if maxScore >= 0.25: |
|
box = [ |
|
outputs[0][i][0] - (0.5 * outputs[0][i][2]), |
|
outputs[0][i][1] - (0.5 * outputs[0][i][3]), |
|
outputs[0][i][2], |
|
outputs[0][i][3], |
|
] |
|
boxes.append(box) |
|
scores.append(maxScore) |
|
class_ids.append(maxClassIndex) |
|
|
|
# Apply NMS (Non-maximum suppression) |
|
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5) |
|
|
|
detections = [] |
|
|
|
# Iterate through NMS results to draw bounding boxes and labels |
|
for i in range(len(result_boxes)): |
|
index = result_boxes[i] |
|
box = boxes[index] |
|
detection = { |
|
"class_id": class_ids[index], |
|
"class_name": CLASSES[class_ids[index]], |
|
"confidence": scores[index], |
|
"box": box, |
|
"scale": scale, |
|
} |
|
detections.append(detection) |
|
draw_bounding_box( |
|
original_image, |
|
class_ids[index], |
|
scores[index], |
|
round(box[0] * scale), |
|
round(box[1] * scale), |
|
round((box[0] + box[2]) * scale), |
|
round((box[1] + box[3]) * scale), |
|
) |
|
|
|
# Display the image with bounding boxes |
|
cv2.imshow("image", original_image) |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|
|
return detections |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model", default="yolov8n.onnx", help="Input your ONNX model.") |
|
parser.add_argument("--img", default=str(ASSETS / "bus.jpg"), help="Path to input image.") |
|
args = parser.parse_args() |
|
main(args.model, args.img)
|
|
|