14 KiB
comments | description | keywords |
---|---|---|
true | Discover how to extend the utility of the Ultralytics package to support your development process. | Ultralytics, YOLO, custom, function, workflow, utility, support, |
Simple Utilities
The ultralytics
package comes with a myriad of utilities that can support, enhance, and speed up your workflows. There are many more available, but here are some that will be useful for most developers. They're also a great reference point to use when learning to program.
Data
YOLO Data Explorer
YOLO Explorer was added in the 8.1.0
anniversary update and is a powerful tool you can use to better understand your dataset. One of the key functions that YOLO Explorer provides, is the ability to use text queries to find object instances in your dataset.
Auto Labeling / Annotations
Dataset annotation is a very resource intensive and time-consuming process. If you have a YOLO object detection model trained on a reasonable amount of data, you can use it and SAM to auto-annotate additional data (segmentation format).
from ultralytics.data.annotator import auto_annotate
auto_annotate(#(1)!
data='path/to/new/data',
det_model='yolov8n.pt',
sam_model='mobile_sam.pt',
device="cuda",
output_dir="path/to/save_labels",
)
- Nothing returns from this function
-
See the reference section for
annotator.auto_annotate
for more insight on how the function operates. -
Use in combination with the function
segments2boxes
to generate object detection bounding boxes as well
Convert COCO into YOLO Format
Use to convert COCO JSON annotations into proper YOLO format. For object detection (bounding box) datasets, use_segments
and use_keypoints
should both be False
from ultralytics.data.converter import convert_coco
convert_coco(#(1)!
'../datasets/coco/annotations/',
use_segments=False,
use_keypoints=False,
cls91to80=True,
)
- Nothing returns from this function
For additional information about the convert_coco
function, visit the reference page
Convert Bounding Boxes to Segments
With existing x y w h
bounding box data, convert to segments using the yolo_bbox2segment
function. The files for images and annotations need to be organized like this:
data
|__ images
├─ 001.jpg
├─ 002.jpg
├─ ..
└─ NNN.jpg
|__ labels
├─ 001.txt
├─ 002.txt
├─ ..
└─ NNN.txt
from ultralytics.data.converter import yolo_bbox2segment
yolo_bbox2segment(#(1)!
im_dir="path/to/images",
save_dir=None, # saved to "labels-segment" in images directory
sam_model="sam_b.pt"
)
- Nothing returns from this function
Visit the yolo_bbox2segment
reference page for more information regarding the function.
Convert Segments to Bounding Boxes
If you have a dataset that uses the segmentation dataset format you can easily convert these into up-right (or horizontal) bounding boxes (x y w h
format) with this function.
from ultralytics.utils.ops import segments2boxes
segments = np.array(
[[805, 392, 797, 400, ..., 808, 714, 808, 392],
[115, 398, 113, 400, ..., 150, 400, 149, 298],
[267, 412, 265, 413, ..., 300, 413, 299, 412],
]
)
segments2boxes([s.reshape(-1,2) for s in segments])
>>> array([[ 741.66, 631.12, 133.31, 479.25],
[ 146.81, 649.69, 185.62, 502.88],
[ 281.81, 636.19, 118.12, 448.88]],
dtype=float32) # xywh bounding boxes
To understand how this function works, visit the reference page
Utilities
Image Compression
Compresses a single image file to reduced size while preserving its aspect ratio and quality. If the input image is smaller than the maximum dimension, it will not be resized.
from pathlib import Path
from ultralytics.data.utils import compress_one_image
for f in Path('path/to/dataset').rglob('*.jpg'):
compress_one_image(f)#(1)!
- Nothing returns from this function
Auto-split Dataset
Automatically split a dataset into train
/val
/test
splits and save the resulting splits into autosplit_*.txt
files. This function will use random sampling, which is not included when using fraction
argument for training.
from ultralytics.data.utils import autosplit
autosplit( #(1)!
path="path/to/images",
weights=(0.9, 0.1, 0.0), # (train, validation, test) fractional splits
annotated_only=False # split only images with annotation file when True
)
- Nothing returns from this function
See the Reference page for additional details on this function.
Segment-polygon to Binary Mask
Convert a single polygon (as list) to a binary mask of the specified image size. Polygon in the form of [N, 2]
with N
as the number of (x, y)
points defining the polygon contour.
!!! warning
`N` <b><u>must always</b></u> be even.
import numpy as np
from ultralytics.data.utils import polygon2mask
imgsz = (1080, 810)
polygon = np.array(
[805, 392, 797, 400, ..., 808, 714, 808, 392], # (238, 2)
)
mask = polygon2mask(
imgsz, # tuple
[polygon], # input as list
color=255, # 8-bit binary
downsample_ratio=1
)
Bounding Boxes
Bounding Box (horizontal) Instances
To manage bounding box data, the Bboxes
class will help to convert between box coordinate formatting, scale box dimensions, calculate areas, include offsets, and more!
from ultralytics.utils.instance import Bboxes
boxes = Bboxes(
bboxes=np.array(
[[ 22.878, 231.27, 804.98, 756.83,],
[ 48.552, 398.56, 245.35, 902.71,],
[ 669.47, 392.19, 809.72, 877.04,],
[ 221.52, 405.8, 344.98, 857.54,],
[ 0, 550.53, 63.01, 873.44,],
[ 0.0584, 254.46, 32.561, 324.87,]]
),
format="xyxy",
)
boxes.areas()
>>> array([ 4.1104e+05, 99216, 68000, 55772, 20347, 2288.5])
boxes.convert("xywh")
boxes.bboxes
>>> array(
[[ 413.93, 494.05, 782.1, 525.56],
[ 146.95, 650.63, 196.8, 504.15],
[ 739.6, 634.62, 140.25, 484.85],
[ 283.25, 631.67, 123.46, 451.74],
[ 31.505, 711.99, 63.01, 322.91],
[ 16.31, 289.67, 32.503, 70.41]]
)
See the Bboxes
reference section for more attributes and methods available.
!!! tip
Many of the following functions (and more) can be accessed using the Bboxes
class but if you prefer to work with the functions directly, see the next subsections on how to import these independently.
Scaling Boxes
When scaling and image up or down, corresponding bounding box coordinates can be appropriately scaled to match using ultralytics.utils.ops.scale_boxes
.
import cv2 as cv
import numpy as np
from ultralytics.utils.ops import scale_boxes
image = cv.imread("ultralytics/assets/bus.jpg")
*(h, w), c = image.shape
resized = cv.resize(image, None, (), fx=1.2, fy=1.2)
*(new_h, new_w), _ = resized.shape
xyxy_boxes = np.array(
[[ 22.878, 231.27, 804.98, 756.83,],
[ 48.552, 398.56, 245.35, 902.71,],
[ 669.47, 392.19, 809.72, 877.04,],
[ 221.52, 405.8, 344.98, 857.54,],
[ 0, 550.53, 63.01, 873.44,],
[ 0.0584, 254.46, 32.561, 324.87,]]
)
new_boxes = scale_boxes(
img1_shape=(h, w), # original image dimensions
boxes=xyxy_boxes, # boxes from original image
img0_shape=(new_h, new_w), # resized image dimensions (scale to)
ratio_pad=None,
padding=False,
xywh=False,
)
new_boxes#(1)!
>>> array(
[[ 27.454, 277.52, 965.98, 908.2],
[ 58.262, 478.27, 294.42, 1083.3],
[ 803.36, 470.63, 971.66, 1052.4],
[ 265.82, 486.96, 413.98, 1029],
[ 0, 660.64, 75.612, 1048.1],
[ 0.0701, 305.35, 39.073, 389.84]]
)
- Bounding boxes scaled for the new image size
Bounding Box Format Conversions
XYXY → XYWH
Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.
import numpy as np
from ultralytics.utils.ops import xyxy2xywh
xyxy_boxes = np.array(
[[ 22.878, 231.27, 804.98, 756.83,],
[ 48.552, 398.56, 245.35, 902.71,],
[ 669.47, 392.19, 809.72, 877.04,],
[ 221.52, 405.8, 344.98, 857.54,],
[ 0, 550.53, 63.01, 873.44,],
[ 0.0584, 254.46, 32.561, 324.87,]]
)
xywh = xyxy2xywh(xyxy_boxes)
xywh
>>> array(
[[ 413.93, 494.05, 782.1, 525.56],
[ 146.95, 650.63, 196.8, 504.15],
[ 739.6, 634.62, 140.25, 484.85],
[ 283.25, 631.67, 123.46, 451.74],
[ 31.505, 711.99, 63.01, 322.91],
[ 16.31, 289.67, 32.503, 70.41]]
)
All Bounding Box Conversions
from ultralytics.utils.ops import xywh2xyxy
from ultralytics.utils.ops import xywhn2xyxy # normalized → pixel
from ultralytics.utils.ops import xyxy2xywhn # pixel → normalized
from ultralytics.utils.ops import xywh2ltwh # xywh → top-left corner, w, h
from ultralytics.utils.ops import xyxy2ltwh # xyxy → top-left corner, w, h
from ultralytics.utils.ops import ltwh2xywh
from ultralytics.utils.ops import ltwh2xyxy
See docstring for each function or visit the ultralytics.utils.ops
reference page to read more about each function.
Plotting
Drawing Annotations
Ultralytics includes an Annotator class that can be used to annotate any kind of data. It's easiest to use with object detection bounding boxes, pose key points, and oriented bounding boxes.
Horizontal Bounding Boxes
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
names { #(1)!
0: "person",
5: "bus",
11: "stop sign",
}
image = cv.imread("ultralytics/assets/bus.jpg")
ann = Annotator(
image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
xyxy_boxes = np.array(
[[ 5, 22.878, 231.27, 804.98, 756.83,], # class-idx x1 y1 x2 y2
[ 0, 48.552, 398.56, 245.35, 902.71,],
[ 0, 669.47, 392.19, 809.72, 877.04,],
[ 0, 221.52, 405.8, 344.98, 857.54,],
[ 0, 0, 550.53, 63.01, 873.44,],
[11, 0.0584, 254.46, 32.561, 324.87,]]
)
for nb, box in enumerate(xyxy_boxes):
c_idx, *box = box
label = f"{str(nb).zfill(2)}:{names.get(int(c_idx))}"
ann.box_label(box, label, color=colors(c_idx, bgr=True))
image_with_bboxes = ann.result()
- Names can be used from
model.names
when working with detection results
Oriented Bounding Boxes (OBB)
import cv2 as cv
import numpy as np
from ultralytics.utils.plotting import Annotator, colors
obb_names = {10: "small vehicle"}
obb_image = cv.imread("datasets/dota8/images/train/P1142__1024__0___824.jpg")
obb_boxes = np.array(
[[ 0, 635, 560, 919, 719, 1087, 420, 803, 261,], # class-idx x1 y1 x2 y2 x3 y2 x4 y4
[ 0, 331, 19, 493, 260, 776, 70, 613, -171,],
[ 9, 869, 161, 886, 147, 851, 101, 833, 115,]
]
)
ann = Annotator(
obb_image,
line_width=None, # default auto-size
font_size=None, # default auto-size
font="Arial.ttf", # must be ImageFont compatible
pil=False, # use PIL, otherwise uses OpenCV
)
for obb in obb_boxes:
c_idx, *obb = obb
obb = np.array(obb).reshape(-1, 4, 2).squeeze()
label = f"{names.get(int(c_idx))}"
ann.box_label(
obb,
label,
color=colors(c_idx, True),
rotated=True,
)
image_with_obb = ann.result()
See the Annotator
Reference Page for additional insight.
Miscellaneous
Code Profiling
Check duration for code to run/process either using with
or as a decorator.
from ultralytics.utils.ops import Profile
with Profile(device=device) as dt:
pass # operation to measure
print(dt)
>>> "Elapsed time is 9.5367431640625e-07 s"
Ultralytics Supported Formats
Want or need to use the formats of images or videos types supported by Ultralytics programmatically? Use these constants if you need.
from ultralytics.data.utils import IMG_FORMATS
from ultralytics.data.utils import VID_FORMATS
print(IMG_FORMATS)
>>> ('bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm')
Make Divisible
Calculates the nearest whole number to x
to make evenly divisible when divided by y
.
from ultralytics.utils.ops import make_divisible
make_divisible(7, 3)
>>> 9
make_divisible(7, 2)
>>> 8