You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.1 KiB
97 lines
3.1 KiB
# Ultralytics YOLO 🚀, AGPL-3.0 license |
|
|
|
import subprocess |
|
from pathlib import Path |
|
|
|
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS |
|
|
|
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n' |
|
CFG = 'yolov8n' |
|
|
|
|
|
def run(cmd): |
|
# Run a subprocess command with check=True |
|
subprocess.run(cmd.split(), check=True) |
|
|
|
|
|
def test_special_modes(): |
|
run('yolo checks') |
|
run('yolo settings') |
|
run('yolo help') |
|
|
|
|
|
# Train checks --------------------------------------------------------------------------------------------------------- |
|
def test_train_det(): |
|
run(f'yolo train detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1 v5loader') |
|
|
|
|
|
def test_train_seg(): |
|
run(f'yolo train segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1') |
|
|
|
|
|
def test_train_cls(): |
|
run(f'yolo train classify model={CFG}-cls.yaml data=imagenet10 imgsz=32 epochs=1') |
|
|
|
|
|
def test_train_pose(): |
|
run(f'yolo train pose model={CFG}-pose.yaml data=coco8-pose.yaml imgsz=32 epochs=1') |
|
|
|
|
|
# Val checks ----------------------------------------------------------------------------------------------------------- |
|
def test_val_detect(): |
|
run(f'yolo val detect model={MODEL}.pt data=coco8.yaml imgsz=32') |
|
|
|
|
|
def test_val_segment(): |
|
run(f'yolo val segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32') |
|
|
|
|
|
def test_val_classify(): |
|
run(f'yolo val classify model={MODEL}-cls.pt data=imagenet10 imgsz=32') |
|
|
|
|
|
def test_val_pose(): |
|
run(f'yolo val pose model={MODEL}-pose.pt data=coco8-pose.yaml imgsz=32') |
|
|
|
|
|
# Predict checks ------------------------------------------------------------------------------------------------------- |
|
def test_predict_detect(): |
|
run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt") |
|
if ONLINE: |
|
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32') |
|
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32') |
|
run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32') |
|
|
|
|
|
def test_predict_segment(): |
|
run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32 save save_txt") |
|
|
|
|
|
def test_predict_classify(): |
|
run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32 save save_txt") |
|
|
|
|
|
def test_predict_pose(): |
|
run(f"yolo predict model={MODEL}-pose.pt source={ROOT / 'assets'} imgsz=32 save save_txt") |
|
|
|
|
|
# Export checks -------------------------------------------------------------------------------------------------------- |
|
def test_export_detect_torchscript(): |
|
run(f'yolo export model={MODEL}.pt format=torchscript') |
|
|
|
|
|
def test_export_segment_torchscript(): |
|
run(f'yolo export model={MODEL}-seg.pt format=torchscript') |
|
|
|
|
|
def test_export_classify_torchscript(): |
|
run(f'yolo export model={MODEL}-cls.pt format=torchscript') |
|
|
|
|
|
def test_export_classify_pose(): |
|
run(f'yolo export model={MODEL}-pose.pt format=torchscript') |
|
|
|
|
|
def test_export_detect_edgetpu(enabled=False): |
|
if enabled and LINUX: |
|
run(f'yolo export model={MODEL}.pt format=edgetpu')
|
|
|