You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
12 KiB
284 lines
12 KiB
--- |
|
comments: true |
|
description: Explore the YOLOv8 command line interface (CLI) for easy execution of detection tasks without needing a Python environment. |
|
keywords: YOLOv8 CLI, command line interface, YOLOv8 commands, detection tasks, Ultralytics, model training, model prediction |
|
--- |
|
|
|
# Command Line Interface Usage |
|
|
|
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command. |
|
|
|
<p align="center"> |
|
<br> |
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Watch:</strong> Mastering Ultralytics YOLOv8: CLI |
|
</p> |
|
|
|
!!! Example |
|
|
|
=== "Syntax" |
|
|
|
Ultralytics `yolo` commands use the following syntax: |
|
```bash |
|
yolo TASK MODE ARGS |
|
|
|
Where TASK (optional) is one of [detect, segment, classify] |
|
MODE (required) is one of [train, val, predict, export, track] |
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. |
|
``` |
|
See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg` |
|
|
|
=== "Train" |
|
|
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01 |
|
```bash |
|
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
=== "Predict" |
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320: |
|
```bash |
|
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 |
|
``` |
|
|
|
=== "Val" |
|
|
|
Val a pretrained detection model at batch-size 1 and image size 640: |
|
```bash |
|
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 |
|
``` |
|
|
|
=== "Export" |
|
|
|
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) |
|
```bash |
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 |
|
``` |
|
|
|
=== "Special" |
|
|
|
Run special commands to see version, view settings, run checks and more: |
|
```bash |
|
yolo help |
|
yolo checks |
|
yolo version |
|
yolo settings |
|
yolo copy-cfg |
|
yolo cfg |
|
``` |
|
|
|
Where: |
|
|
|
- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess the `TASK` from the model type. |
|
- `MODE` (required) is one of `[train, val, predict, export, track]` |
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` |
|
|
|
!!! Warning "Warning" |
|
|
|
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments. |
|
|
|
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅ |
|
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ |
|
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ |
|
|
|
## Train |
|
|
|
Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page. |
|
|
|
!!! Example "Example" |
|
|
|
=== "Train" |
|
|
|
Start training YOLOv8n on COCO8 for 100 epochs at image-size 640. |
|
```bash |
|
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640 |
|
``` |
|
|
|
=== "Resume" |
|
|
|
Resume an interrupted training. |
|
```bash |
|
yolo detect train resume model=last.pt |
|
``` |
|
|
|
## Val |
|
|
|
Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need to passed as the `model` retains its training `data` and arguments as model attributes. |
|
|
|
!!! Example "Example" |
|
|
|
=== "Official" |
|
|
|
Validate an official YOLOv8n model. |
|
```bash |
|
yolo detect val model=yolov8n.pt |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Validate a custom-trained model. |
|
```bash |
|
yolo detect val model=path/to/best.pt |
|
``` |
|
|
|
## Predict |
|
|
|
Use a trained YOLOv8n model to run predictions on images. |
|
|
|
!!! Example "Example" |
|
|
|
=== "Official" |
|
|
|
Predict with an official YOLOv8n model. |
|
```bash |
|
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Predict with a custom model. |
|
```bash |
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' |
|
``` |
|
|
|
## Export |
|
|
|
Export a YOLOv8n model to a different format like ONNX, CoreML, etc. |
|
|
|
!!! Example "Example" |
|
|
|
=== "Official" |
|
|
|
Export an official YOLOv8n model to ONNX format. |
|
```bash |
|
yolo export model=yolov8n.pt format=onnx |
|
``` |
|
|
|
=== "Custom" |
|
|
|
Export a custom-trained model to ONNX format. |
|
```bash |
|
yolo export model=path/to/best.pt format=onnx |
|
``` |
|
|
|
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. |
|
|
|
| Format | `format` Argument | Model | Metadata | Arguments | |
|
| ------------------------------------------------- | ----------------- | ------------------------- | -------- | -------------------------------------------------------------------- | |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - | |
|
| [TorchScript](../integrations/torchscript.md) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize`, `batch` | |
|
| [ONNX](../integrations/onnx.md) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `batch` | |
|
| [OpenVINO](../integrations/openvino.md) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [TensorRT](../integrations/tensorrt.md) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `batch` | |
|
| [CoreML](../integrations/coreml.md) | `coreml` | `yolov8n.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`, `batch` | |
|
| [TF SavedModel](../integrations/tf-savedmodel.md) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras`, `int8`, `batch` | |
|
| [TF GraphDef](../integrations/tf-graphdef.md) | `pb` | `yolov8n.pb` | ❌ | `imgsz`, `batch` | |
|
| [TF Lite](../integrations/tflite.md) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [TF Edge TPU](../integrations/edge-tpu.md) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` | |
|
| [TF.js](../integrations/tfjs.md) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz`, `half`, `int8`, `batch` | |
|
| [PaddlePaddle](../integrations/paddlepaddle.md) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz`, `batch` | |
|
| [NCNN](../integrations/ncnn.md) | `ncnn` | `yolov8n_ncnn_model/` | ✅ | `imgsz`, `half`, `batch` | |
|
|
|
See full `export` details in the [Export](../modes/export.md) page. |
|
|
|
## Overriding default arguments |
|
|
|
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs. |
|
|
|
!!! Tip "" |
|
|
|
=== "Train" |
|
|
|
Train a detection model for `10 epochs` with `learning_rate` of `0.01` |
|
```bash |
|
yolo detect train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
=== "Predict" |
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320: |
|
```bash |
|
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 |
|
``` |
|
|
|
=== "Val" |
|
|
|
Validate a pretrained detection model at batch-size 1 and image size 640: |
|
```bash |
|
yolo detect val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 |
|
``` |
|
|
|
## Overriding default config file |
|
|
|
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, i.e. `cfg=custom.yaml`. |
|
|
|
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command. |
|
|
|
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example: |
|
|
|
!!! Example |
|
|
|
=== "CLI" |
|
|
|
```bash |
|
yolo copy-cfg |
|
yolo cfg=default_copy.yaml imgsz=320 |
|
``` |
|
|
|
## FAQ |
|
|
|
### How do I use the Ultralytics YOLOv8 command line interface (CLI) for model training? |
|
|
|
To train a YOLOv8 model using the CLI, you can execute a simple one-line command in the terminal. For example, to train a detection model for 10 epochs with a learning rate of 0.01, you would run: |
|
|
|
```bash |
|
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
This command uses the `train` mode with specific arguments. Refer to the full list of available arguments in the [Configuration Guide](cfg.md). |
|
|
|
### What tasks can I perform with the Ultralytics YOLOv8 CLI? |
|
|
|
The Ultralytics YOLOv8 CLI supports a variety of tasks including detection, segmentation, classification, validation, prediction, export, and tracking. For instance: |
|
|
|
- **Train a Model**: Run `yolo train data=<data.yaml> model=<model.pt> epochs=<num>`. |
|
- **Run Predictions**: Use `yolo predict model=<model.pt> source=<data_source> imgsz=<image_size>`. |
|
- **Export a Model**: Execute `yolo export model=<model.pt> format=<export_format>`. |
|
|
|
Each task can be customized with various arguments. For detailed syntax and examples, see the respective sections like [Train](#train), [Predict](#predict), and [Export](#export). |
|
|
|
### How can I validate the accuracy of a trained YOLOv8 model using the CLI? |
|
|
|
To validate a YOLOv8 model's accuracy, use the `val` mode. For example, to validate a pretrained detection model with a batch size of 1 and image size of 640, run: |
|
|
|
```bash |
|
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640 |
|
``` |
|
|
|
This command evaluates the model on the specified dataset and provides performance metrics. For more details, refer to the [Val](#val) section. |
|
|
|
### What formats can I export my YOLOv8 models to using the CLI? |
|
|
|
YOLOv8 models can be exported to various formats such as ONNX, CoreML, TensorRT, and more. For instance, to export a model to ONNX format, run: |
|
|
|
```bash |
|
yolo export model=yolov8n.pt format=onnx |
|
``` |
|
|
|
For complete details, visit the [Export](../modes/export.md) page. |
|
|
|
### How do I customize YOLOv8 CLI commands to override default arguments? |
|
|
|
To override default arguments in YOLOv8 CLI commands, pass them as `arg=value` pairs. For example, to train a model with custom arguments, use: |
|
|
|
```bash |
|
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
``` |
|
|
|
For a full list of available arguments and their descriptions, refer to the [Configuration Guide](cfg.md). Ensure arguments are formatted correctly, as shown in the [Overriding default arguments](#overriding-default-arguments) section.
|
|
|