You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
445 lines
12 KiB
445 lines
12 KiB
--- |
|
comments: true |
|
description: Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration. |
|
keywords: Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration |
|
--- |
|
|
|
# Ultralytics HUB Inference API |
|
|
|
The [Ultralytics HUB](https://ultralytics.com/hub) Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally. |
|
|
|
![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Ultralytics Inference API card](https://raw.githubusercontent.com/ultralytics/assets/main/docs/hub/inference-api/hub_inference_api_1.jpg) |
|
|
|
<p align="center"> |
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/OpWpBI35A5Y" |
|
title="YouTube video player" frameborder="0" |
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" |
|
allowfullscreen> |
|
</iframe> |
|
<br> |
|
<strong>Watch:</strong> Ultralytics HUB Inference API Walkthrough |
|
</p> |
|
|
|
## Python |
|
|
|
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using Python, use the following code: |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
!!! note "Note" |
|
|
|
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on. |
|
|
|
## cURL |
|
|
|
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using cURL, use the following code: |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
!!! note "Note" |
|
|
|
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on. |
|
|
|
## Arguments |
|
|
|
See the table below for a full list of available inference arguments. |
|
|
|
| Argument | Default | Type | Description | |
|
| ------------ | ------- | ------- | -------------------------------------------------------------------- | |
|
| `image` | | `image` | Image file to be used for inference. | |
|
| `url` | | `str` | URL of the image if not passing a file. | |
|
| `size` | `640` | `int` | Size of the input image, valid range is `32` - `1280` pixels. | |
|
| `confidence` | `0.25` | `float` | Confidence threshold for predictions, valid range `0.01` - `1.0`. | |
|
| `iou` | `0.45` | `float` | Intersection over Union (IoU) threshold, valid range `0.0` - `0.95`. | |
|
|
|
## Response |
|
|
|
The [Ultralytics HUB](https://ultralytics.com/hub) Inference API returns a JSON response. |
|
|
|
### Classification |
|
|
|
!!! Example "Classification Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-cls.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
success: true, |
|
message: "Inference complete.", |
|
data: [ |
|
{ |
|
class: 0, |
|
name: "person", |
|
confidence: 0.92 |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### Detection |
|
|
|
!!! Example "Detection Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
success: true, |
|
message: "Inference complete.", |
|
data: [ |
|
{ |
|
class: 0, |
|
name: "person", |
|
confidence: 0.92, |
|
width: 0.4893378019332886, |
|
height: 0.7437513470649719, |
|
xcenter: 0.4434437155723572, |
|
ycenter: 0.5198975801467896 |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### OBB |
|
|
|
!!! Example "OBB Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-obb.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
success: true, |
|
message: "Inference complete.", |
|
data: [ |
|
{ |
|
class: 0, |
|
name: "person", |
|
confidence: 0.92, |
|
obb: [ |
|
0.669310450553894, |
|
0.6247171759605408, |
|
0.9847468137741089, |
|
... |
|
] |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### Segmentation |
|
|
|
!!! Example "Segmentation Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-seg.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
success: true, |
|
message: "Inference complete.", |
|
data: [ |
|
{ |
|
class: 0, |
|
name: "person", |
|
confidence: 0.92, |
|
segment: [0.44140625, 0.15625, 0.439453125, ...] |
|
} |
|
] |
|
} |
|
``` |
|
|
|
### Pose |
|
|
|
!!! Example "Pose Model" |
|
|
|
=== "`ultralytics`" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load model |
|
model = YOLO("yolov8n-pose.pt") |
|
|
|
# Run inference |
|
results = model("image.jpg") |
|
|
|
# Print image.jpg results in JSON format |
|
print(results[0].tojson()) |
|
``` |
|
|
|
=== "cURL" |
|
|
|
```bash |
|
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ |
|
-H "x-api-key: API_KEY" \ |
|
-F "image=@/path/to/image.jpg" \ |
|
-F "size=640" \ |
|
-F "confidence=0.25" \ |
|
-F "iou=0.45" |
|
``` |
|
|
|
=== "Python" |
|
|
|
```python |
|
import requests |
|
|
|
# API URL, use actual MODEL_ID |
|
url = "https://api.ultralytics.com/v1/predict/MODEL_ID" |
|
|
|
# Headers, use actual API_KEY |
|
headers = {"x-api-key": "API_KEY"} |
|
|
|
# Inference arguments (optional) |
|
data = {"size": 640, "confidence": 0.25, "iou": 0.45} |
|
|
|
# Load image and send request |
|
with open("path/to/image.jpg", "rb") as image_file: |
|
files = {"image": image_file} |
|
response = requests.post(url, headers=headers, files=files, data=data) |
|
|
|
print(response.json()) |
|
``` |
|
|
|
=== "Response" |
|
|
|
```json |
|
{ |
|
success: true, |
|
message: "Inference complete.", |
|
data: [ |
|
{ |
|
class: 0, |
|
name: "person", |
|
confidence: 0.92, |
|
keypoints: [ |
|
0.5290805697441101, |
|
0.20698919892311096, |
|
1.0, |
|
0.5263055562973022, |
|
0.19584226608276367, |
|
1.0, |
|
0.5094948410987854, |
|
0.19120082259178162, |
|
1.0, |
|
... |
|
] |
|
} |
|
] |
|
} |
|
```
|
|
|