You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

133 lines
4.7 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
from itertools import product
from pathlib import Path
import pytest
import torch
from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
from ultralytics import YOLO
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
from ultralytics.utils import ASSETS, WEIGHTS_DIR
def test_checks():
"""Validate CUDA settings against torch CUDA functions."""
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
@pytest.mark.parametrize(
"task, dynamic, int8, half, batch",
[ # generate all combinations but exclude those where both int8 and half are True
(task, dynamic, int8, half, batch)
# Note: tests reduced below pending compute availability expansion as GPU CI runner utilization is high
# for task, dynamic, int8, half, batch in product(TASKS, [True, False], [True, False], [True, False], [1, 2])
for task, dynamic, int8, half, batch in product(TASKS, [True], [True], [False], [2])
if not (int8 and half) # exclude cases where both int8 and half are True
],
)
def test_export_engine_matrix(task, dynamic, int8, half, batch):
"""Test YOLO exports to TensorRT format."""
file = YOLO(TASK2MODEL[task]).export(
format="engine",
imgsz=32,
dynamic=dynamic,
int8=int8,
half=half,
batch=batch,
data=TASK2DATA[task],
workspace=1, # reduce workspace GB for less resource utilization during testing
)
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
Path(file).unlink() # cleanup
Path(file).with_suffix(".cache").unlink() if int8 else None # cleanup INT8 cache
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_train():
"""Test model training on a minimal dataset."""
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1]
YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device) # requires imgsz>=64
@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_predict_multiple_devices():
"""Validate model prediction on multiple devices."""
model = YOLO("yolov8n.pt")
model = model.cpu()
assert str(model.device) == "cpu"
_ = model(SOURCE) # CPU inference
assert str(model.device) == "cpu"
model = model.to("cuda:0")
assert str(model.device) == "cuda:0"
_ = model(SOURCE) # CUDA inference
assert str(model.device) == "cuda:0"
model = model.cpu()
assert str(model.device) == "cpu"
_ = model(SOURCE) # CPU inference
assert str(model.device) == "cpu"
model = model.cuda()
assert str(model.device) == "cuda:0"
_ = model(SOURCE) # CUDA inference
assert str(model.device) == "cuda:0"
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_autobatch():
"""Check batch size for YOLO model using autobatch."""
from ultralytics.utils.autobatch import check_train_batch_size
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True)
@pytest.mark.slow
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_utils_benchmarks():
"""Profile YOLO models for performance benchmarks."""
from ultralytics.utils.benchmarks import ProfileModels
# Pre-export a dynamic engine model to use dynamic inference
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
def test_predict_sam():
"""Test SAM model prediction with various prompts."""
from ultralytics import SAM
from ultralytics.models.sam import Predictor as SAMPredictor
# Load a model
model = SAM(WEIGHTS_DIR / "sam_b.pt")
# Display model information (optional)
model.info()
# Run inference
model(SOURCE, device=0)
# Run inference with bboxes prompt
model(SOURCE, bboxes=[439, 437, 524, 709], device=0)
# Run inference with points prompt
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0)
# Create SAMPredictor
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt")
predictor = SAMPredictor(overrides=overrides)
# Set image
predictor.set_image(ASSETS / "zidane.jpg") # set with image file
# predictor(bboxes=[439, 437, 524, 709])
# predictor(points=[900, 370], labels=[1])
# Reset image
predictor.reset_image()