You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
11 KiB
193 lines
11 KiB
--- |
|
comments: true |
|
description: Check YOLO class label with only one class for the whole image, using image classification. Get strategies for training and validation models. |
|
--- |
|
|
|
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of |
|
predefined classes. |
|
|
|
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png"> |
|
|
|
The output of an image classifier is a single class label and a confidence score. Image |
|
classification is useful when you need to know only what class an image belongs to and don't need to know where objects |
|
of that class are located or what their exact shape is. |
|
|
|
!!! tip "Tip" |
|
|
|
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml). |
|
|
|
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8) |
|
|
|
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on |
|
the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify |
|
models are pretrained on |
|
the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset. |
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest |
|
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use. |
|
|
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 | |
|
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------| |
|
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 | |
|
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 | |
|
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 | |
|
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 | |
|
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 | |
|
|
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. |
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0` |
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) |
|
instance. |
|
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` |
|
|
|
## Train |
|
|
|
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments |
|
see the [Configuration](../usage/cfg.md) page. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load a model |
|
model = YOLO('yolov8n-cls.yaml') # build a new model from YAML |
|
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training) |
|
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # build from YAML and transfer weights |
|
|
|
# Train the model |
|
model.train(data='mnist160', epochs=100, imgsz=64) |
|
``` |
|
|
|
=== "CLI" |
|
|
|
```bash |
|
# Build a new model from YAML and start training from scratch |
|
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64 |
|
|
|
# Start training from a pretrained *.pt model |
|
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64 |
|
|
|
# Build a new model from YAML, transfer pretrained weights to it and start training |
|
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64 |
|
``` |
|
|
|
### Dataset format |
|
|
|
The YOLO classification dataset format is same as the torchvision format. Each class of images has its own folder and you have to simply pass the path of the dataset folder, i.e, `yolo classify train data="path/to/dataset"` |
|
|
|
``` |
|
dataset/ |
|
├── train/ |
|
├──── class1/ |
|
├──── class2/ |
|
├──── class3/ |
|
├──── ... |
|
├── val/ |
|
├──── class1/ |
|
├──── class2/ |
|
├──── class3/ |
|
├──── ... |
|
``` |
|
|
|
## Val |
|
|
|
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains |
|
it's training `data` and arguments as model attributes. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load a model |
|
model = YOLO('yolov8n-cls.pt') # load an official model |
|
model = YOLO('path/to/best.pt') # load a custom model |
|
|
|
# Validate the model |
|
metrics = model.val() # no arguments needed, dataset and settings remembered |
|
metrics.top1 # top1 accuracy |
|
metrics.top5 # top5 accuracy |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo classify val model=yolov8n-cls.pt # val official model |
|
yolo classify val model=path/to/best.pt # val custom model |
|
``` |
|
|
|
## Predict |
|
|
|
Use a trained YOLOv8n-cls model to run predictions on images. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load a model |
|
model = YOLO('yolov8n-cls.pt') # load an official model |
|
model = YOLO('path/to/best.pt') # load a custom model |
|
|
|
# Predict with the model |
|
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model |
|
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model |
|
``` |
|
|
|
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page. |
|
|
|
## Export |
|
|
|
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc. |
|
|
|
!!! example "" |
|
|
|
=== "Python" |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
# Load a model |
|
model = YOLO('yolov8n-cls.pt') # load an official model |
|
model = YOLO('path/to/best.pt') # load a custom trained |
|
|
|
# Export the model |
|
model.export(format='onnx') |
|
``` |
|
=== "CLI" |
|
|
|
```bash |
|
yolo export model=yolov8n-cls.pt format=onnx # export official model |
|
yolo export model=path/to/best.pt format=onnx # export custom trained model |
|
``` |
|
|
|
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models, |
|
i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes. |
|
|
|
| Format | `format` Argument | Model | Metadata | Arguments | |
|
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------| |
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - | |
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` | |
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` | |
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ | `imgsz`, `half` | |
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` | |
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` | |
|
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` | |
|
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` | |
|
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` | |
|
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` | |
|
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` | |
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` | |
|
|
|
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page. |